Advertisement

Hyperfine Interactions

, Volume 226, Issue 1–3, pp 517–527 | Cite as

Preparation of improved catalytic materials for water purification

  • Z. Cherkezova-Zheleva
  • D. Paneva
  • M. Tsvetkov
  • B. Kunev
  • M. Milanova
  • N. Petrov
  • I. Mitov
Article

Abstract

The aim of presented paper was to study preparation of catalytic materials for water purification. Iron oxide (Fe3O4) samples supported on activated carbon were prepared by wet impregnation method and low temperature heating in an inert atmosphere. The as-prepared, activated and samples after catalytic test were characterized by Mössbauer spectroscopy and X-ray diffraction. The obtained X-ray diffraction patterns of prepared samples show broad and low-intensity peaks of magnetite phase and the characteristic peaks of the activated carbon. The average crystallite size of magnetite particles was calculated below 20 nm. The registered Mössbauer spectra of prepared materials show a superposition of doublet lines or doublet and sextet components. The calculated hyperfine parameters after spectra evaluation reveal the presence of magnetite phase with nanosize particles. Relaxation phenomena were registered in both cases, i.e. superparamagnetism or collective magnetic excitation behavior, respectively. Low temperature Mössbauer spectra confirm this observation. Application of materials as photo-Fenton catalysts for organic pollutions degradation was studied. It was obtained high adsorption degree of dye, extremely high reaction rate and fast dye degradation. Photocatalytic behaviour of a more active sample was enhanced using mechanochemical activation (MCA). The nanometric size and high dispersion of photocatalyst particles influence both the adsorption and degradation mechanism of reaction. The results showed that all studied photocatalysts effectively decompose the organic pollutants under UV light irradiation. Partial oxidation of samples after catalytic tests was registered. Combination of magnetic particles with high photocatalytic activity meets both the requirements of photocatalytic degradation of water contaminants and that of recovery for cyclic utilization of material.

Keywords

Nano-sized supported magnetite Activated carbon Mechanochemical activation Photo-Fenton reaction Wastewaters purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serp, P., Figueiredo, J.L.: Carbon Materials for Catalysis. Wiley, Hoboken (2009)Google Scholar
  2. 2.
    Marsh, H., Rodrigues-Reinoso, F.: Activated Carbon. Elsevier Ltd., Oxford (2006)Google Scholar
  3. 3.
    Shen, W., Li, Z., Liu, Y.: Surface chemical functional groups modification of porous carbon. Recent Patents Chem. Eng. 1, 27–40 (2008)CrossRefGoogle Scholar
  4. 4.
    McQueeney, R.J., Yethiraj, M., Chang, S., Montfrooij, W., Perring, T.G., Honig, J.M., Metcalf, P.: Zener double exchange from local valence fluctuations in magnetite. Phys. Rev. Lett. 99, 246401–246405 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Bautista, P., Mohedano, A.F., Casas, J.A., Zazo, J.A., Rodriguez, J.J.: An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 83/10, 1323–1338 (2008)CrossRefGoogle Scholar
  6. 6.
    Umar, M., Aziz, H.A., Yusoff, M.S.: Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 30/11, 2113–2121 (2010)CrossRefGoogle Scholar
  7. 7.
    Tang, W.Z., Chen, R.Z.: Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere 32/5, 947–958 (1996)CrossRefGoogle Scholar
  8. 8.
    Padoley, K.V., Mudliar, S.N., Banerjee, S.K., Deshmukh, S.C., Pandey, R.A.: Fenton oxidation: a pretreatment option for improved biological treatment of pyridine and 3-cyanopyridine plant wastewater. Chem. Eng. J. 166/1, 1–9 (2011)Google Scholar
  9. 9.
    Hermosilla, D., Merayo, N., Ordóñez, R., Blanco, A.: Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Manag. 32/6, 1236–1243 (2012)CrossRefGoogle Scholar
  10. 10.
    Navarro, R., Ichikawa, H., Tatsumi, K.: Ferrite formation from photo-Fenton treated wastewater. Chemosphere 80, 404–409 (2010)CrossRefGoogle Scholar
  11. 11.
    Hansson, H., Kaczala, F., Marques, M., Hogland, W.: Photo-Fenton and Fenton oxidation of recalcitrant industrial wastewater using nanoscale zero-valent iron. Intern. J. Photoen. (2012). doi: 10.1155/2012/531076
  12. 12.
    Emilio, C.A., Jardim, W.F., Litter, M.I., Mansilla, H.D.: EDTA destruction using solar ferrioxalate advanced oxidation technology (AOT). Comparison with solar photo-Fenton treatment. J. Photochem. Photobiol. A 151, 121–127 (2002)CrossRefGoogle Scholar
  13. 13.
    Cedeño-Mattei, Y., Perales-Pérez, O.: Synthesis of high-coercivity cobalt ferrite nanocrystals. Microelectron. J. 40, 673–676 (2009)CrossRefGoogle Scholar
  14. 14.
    Tsyntsarski, B., Petrova, B., Budinova, T., Petrov, N., Velasco, L., Ania, C.O.: Characterization and application of activated carbon from biomass and coal wastes for naphthalene removal. Bulg. Chem. Commun. 43/4, 552–557 (2011)Google Scholar
  15. 15.
    Sawatsky, G.A., van der Woude, F., Morrish, A.H.: Recoilless fraction ratio for Fe57 in octahedral and tetrahedral sites of a spinel and a garnet. Phys. Rev. 183, 383–386 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    Srivastava, C.M., Shringi, S.N., Babu, M.V.: Mössbauer study of the low-temperature phase of magnetite. Phys. Stat. Sol. (a) 65, 731–735 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Coutinho, A.R., Rocha, J.D., Luengo, C.A.: Preparing and characterizing biocarbon electrodes. Fuel Process Technol. 67, 93–102 (2000)CrossRefGoogle Scholar
  18. 18.
    Williamson, G., Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metal. 1/1, 22–31 (1953)CrossRefGoogle Scholar
  19. 19.
    Bødkert, F., Mørup, S., Oxborrow, C.A., Linderoth, S., Madsen, M.B., Niemansverdriet, J.W.: Mössbauer studies of ultrafine iron-containing particles on a carbon support. J. Phys. Condens. Matter 4, 6555–5568 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., Wieczorek-Ciurowa, K.: Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7638 (2013)CrossRefGoogle Scholar
  21. 21.
    Ortega-Liébana, M.C., Sánchez-López, E., Hidalgo-Carrillo, J., Marinas, A., Marinas, J.M., Urbano, F.J.: A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis. Appl. Catal. B Environ. 127, 316–322 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Z. Cherkezova-Zheleva
    • 1
  • D. Paneva
    • 1
  • M. Tsvetkov
    • 2
  • B. Kunev
    • 1
  • M. Milanova
    • 2
  • N. Petrov
    • 3
  • I. Mitov
    • 1
  1. 1.Institute of CatalysisBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  3. 3.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations