Advertisement

Hyperfine Interactions

, Volume 226, Issue 1–3, pp 405–413 | Cite as

Magnetic transitions in LaFe13−x−yCoySix compounds

  • J. L. Wang
  • S. J. Campbell
  • S. J. Kennedy
  • P. Shamba
  • R. Zeng
  • S. X. Dou
  • G. H. Wu
Article

Abstract

The magnetic properties of a set of LaFe13−x−yCoySix compounds (x = 1.6 − 2.6; y = 0, y = 1.0) have been investigated using magnetic measurements, thermal expansion, 57Fe Mössbauer spectroscopy and high resolution neutron powder diffraction methods over the temperature range 10–300 K. The natures of the magnetic transitions in these LaFe13−x−yCoySix compounds have been determined. The Curie temperatures of LaFe13−xSix were found to increase with Si content from TC = 219(5) K for Si content x = 1.6 to TC = 250(5) K for x = 2.6. Substitution of Co for Fe in LaFe10.4Si2.6 resulted in a further enhancement of the magnetic ordering temperature to TC = 281(5) K for the LaFe9.4CoSi2.6 compound. The nature of the magnetic transition at the Curie temperature changes from first order for LaFe11.4Si1.6 to second order for LaFe10.4Si2.6 and LaFe9.4CoSi2.6. The temperature dependences of the mean magnetic hyperfine field values lead to TC values in good agreement with analyses of the magnetic measurements. The magnetic entropy change, −ΔSM, has been determined from the magnetization curves as functions of temperature and magnetic field (ΔB = 0 − 5 T) by applying the standard Maxwell relation. In the case of LaFe12.4Si1.6 for example, the magnetic entropy change around TC is determined to be -ΔSM ∼ 14.5 J kg−1 K−1 for a magnetic field change Δ B = 0 − 5 T.

Keywords

Magnetic transitions Magnetocaloric effect Negative thermal expansion LaFe13−x−yCoySix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glanz, J.: Science 279, 2045 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: Int. J. Refrig. 29, 1239 (2006)CrossRefGoogle Scholar
  3. 3.
    Gschneidner, K.A. Jr., Pecharsky, V.K., Tsoko, A.O.: Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Sheik-Bahae, M., Epstein, R.I.: Nat. Photon. 1, 693 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Bell, L.E.: Science 321, 1457 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Neese, B., Chu, B., Lu, S.G., Wang, Y., Furman, E., Zhang, Q.M.: Science 321, 821 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Fujita, A., Fujieda, S., Fukamichi, K., Mitamura, H., Goto, T.: Phys. Rev. B 65, 014410 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.: Appl. Phys. Lett. 78, 3675 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K.: Phys. Rev. B 67, 104416 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, F., Chen, Y.F., Wang, G.J., Sun, J.R., Shen, B.G.: J. Phys. Condens. Matter 16, 2103 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, H., Long, Y., Cao, Q., Zou, M., Gschneidner, K.A. Jr., Pecharsky, V.K.: J. Alloy Compd. 509, 3746 (2011)CrossRefGoogle Scholar
  13. 13.
    Fujita, A., Fukamichi, K.: IEEE Trans. Magn. 35, 1796 (1999)Google Scholar
  14. 14.
    Balli, M., Fruchart, D., Sari, O., Gignoux, D., Huang, J.H., Hu, J., Egolf, P.W.: J. Appl. Phys. 106, 023902 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, X.B., Altounian, Z., Ryan, D.H.: J. Magn. Magn. Mater. 270, 305 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Chen, X., Chen, Y., Tang, Y.: J. Alloy Compd. 509, 8534 (2011). Md Din, M.F., Wang, J.L., Zeng R., Shamba, P., Debnath, J.C., Dou, S.X.: Intermetallics 36, 1 (2013)CrossRefGoogle Scholar
  17. 17.
    Yan, A., Muller, K., Gutfleisch, O.: J. Alloy Compd. 450, 18 (2008)CrossRefGoogle Scholar
  18. 18.
    Phejar, M., Paul-Boncour, V., Bessais, L.: Intermetallics 18, 2301 (2010)CrossRefGoogle Scholar
  19. 19.
    Liu, X.B., Altounian, Z., Ryan, D.H.: J. Phys. Condens. Matter 15, 7385 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., Cheng, Z.H.: Adv. Mater. 21, 4545 (2009)CrossRefGoogle Scholar
  21. 21.
    Wang, J.L., Ibarra, M.R., Marquina, C., García-Landa, B., Li, W.X., Tang, N., Wang, W.Q., Yang, F.M., Wu, G.H.: J. Appl. Phys. 92, 1453 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Jiang, W.J., Zhou, X.Z., Williams, G., Privezentsev, R., Mukovskii, Y.: Phys. Rev. B 79, 214433 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Kouvel, J.S., Fisher, M.E.: Phys. Rev. 136, A1626 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, J.L., Campbell, S.J., Kennedy, S.J., Zeng, R., Dou, S.X., Wu, G.H.: J. Phys. Condens. Matter 23, 216002 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Kaul, S.N.: J. Magn. Magn. Mater. 53, 5 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, J.L., Campbell, S.J., Cadogan, J.M., Studer, A.J., Zeng, R., Dou, S.X.: Appl. Phys. Lett. 98, 232509 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Fujita, A., Fukamichi, K.: J. Alloy Compd. 404–406, 554 (2005)CrossRefGoogle Scholar
  28. 28.
    Phejar, M., Paul-Boncour, V., Bessais, L.: Intermetallics 18, 2301 (2010)CrossRefGoogle Scholar
  29. 29.
    Wang, J.L., Campbell, S.J., Tegus, O., Marquina, C., Ibarra, M.R.: Phys. Rev. B 75, 174423 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, J.L., Ibarra, M.R., Marquina, C., García-Landa, B., Li, W.X., Tang, N., Wang, W.Q., Yang, F.M., Wu, G.H.: J. Appl. Phys. 92, 1453 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Chen, Y., Shen, J.: Acta Phys. Sin. 58, S141 (2009)Google Scholar
  32. 32.
    Huang, R., Liu, Y., Fan, W., Tan, J., Xiao, F., Qian, L., Li, L.: J. Am. Chem. Soc. 135, 11469 (2013). doi: 10.1021/ja405161z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. L. Wang
    • 1
    • 2
  • S. J. Campbell
    • 3
  • S. J. Kennedy
    • 2
  • P. Shamba
    • 1
  • R. Zeng
    • 1
  • S. X. Dou
    • 1
  • G. H. Wu
    • 4
  1. 1.Institute for Superconductivity and Electronic MaterialsUniversity of WollongongWollongongAustralia
  2. 2.Bragg InstituteANSTOLucas HeightsAustralia
  3. 3.School of Physical, Environmental and Mathematical SciencesUNSW Canberra at the Australian Defence Force AcademyCanberraAustralia
  4. 4.National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingPeoples’s Republic of China

Personalised recommendations