Hyperfine Interactions

, Volume 226, Issue 1–3, pp 41–50 | Cite as

57Fe Mössbauer study of new multiferroic AgFeO2

  • I. Presniakov
  • V. Rusakov
  • A. Sobolev
  • A. Gapochka
  • M. Matsnev
  • A. A. Belik


The present work reports results of the 57Fe Mössbauer measurements on AgFeO2 powder sample recorded at various temperatures including the points of both magnetic phase transitions. The 57Fe Mössbauer spectra of AgFeO2 measured in the paramagnetic range (T > T N1) consist of one quadrupole doublet with rather high quadrupole splitting of Δ300K = 0.66 ± 0.01 mm/s for Fe3+ ions. In order to predict the sign of electric field gradient (EFG) at 57Fe nuclei, we calculated the lattice contribution to the electric field gradient (EFG) at 57Fe nuclei, which emphasized the importance of the dipolar contributions, with resultant oxygen polarizabilities in the range of α O = 0.83 Å3, in agreement with the results obtained previously for other delafossite-like oxides. In the temperature range of T N2 < T < T N1, Mössbauer spectra gave clear evidence for the existence of a distribution of the hyperfine magnetic fields H hf at 57Fe nuclei. We present the results of a model fitting of the spectra based on an assumption of the cycloid magnetic structure of AgFeO2 at T < T N2. The obtained data were analysed in comparison with published data on Mössbauer studies of oxide multiferroics.


Mössbauer spectroscopy Multiferroics Frustrated magnetic interactions Iron oxides Non-collinear spin configurations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, K.F., Liu, J.-M., Ren, Z.F.: Adv. Phys. 58, 321 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Diep, H.T.: Frustrated Spin Systems.World Scientific, Singapore (2004)MATHGoogle Scholar
  3. 3.
    Vasiliev, A., Volkova, O., Presniakov, I., et al.: J. Phys. Condens. Matt. 22, 016007 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Terada, N., Khalyavin, D.D., Manuel, P., et al.: Phys. Rev. Lett 109, 097203 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Muir, A.H.: Wiedersich, H. Jr.: J. Phys. Chem. Solids 28, 65 (1967)ADSGoogle Scholar
  6. 6.
    Xu, W.M., Pasternak, M.P., Taylor, R.D.: Phys. Rev. B 69, 052401 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Mekata, M., Yaguchi, N., Takagi, T., Sugino, T., et al.: J. Phys. Soc. Jpn. 62, 4474 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Choi, D.H., Shim, I.-B., Kim, C.S.: J. Magn. Magnet. Mater. 320, e575 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Xu, W.M., Rozenberg, G.Kh., Pasternak, M.P., et al.: Phys. Rev. B 81, 104110 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    El Ataoui, K., Doumerc, J.-P., Ammar, A., Fournes, L., et al.: J. Alloys Comp. 368, 79 (2004)CrossRefGoogle Scholar
  11. 11.
    Palewicza, A., Szumiatab, T., Przeniosło, R., et al.: Solid State Commun. 140, 359 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Menil, F.: J. Phys. Chem. Solids 46, 763 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    Doumerc, J.-P., Ammar, A., Wichainchai, A., et al.: J. Phys. Chem. Solids 48, 37 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Sharma, R.R.: Phys. Rev. B 6, 4310 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    Rusakov, V.S., Khramov, D.A.: Izv. Akad. Nauk SSSR, Ser. Fiz. 56, 201 (1992)Google Scholar
  16. 16.
    Taft, C.A.: J. Phys. C Solid State Phys. 10, L369 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    Nakajima, T., Mitsuda, S., Takahashi, K., et al.: Phys. Rev. B 79, 214423 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Terada, N., Nakajima, T., Mitsuda, S., et al.: Phys. Rev. B 78, 014101 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Zalesskii, A.V., Zvezdin, A.K., Frolov, A.A., Bush, A.A.: JETP Lett. 71, 465 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Fishman, R.S., Ye, F., Fernandez-Baca, J.A., et al.: Phys. Rev. B 78, 140407 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Ye, F., Ren, Y., Huang, Q.: Phys. Rev. B 73, 220404 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Fishman, R.S.: J. Appl. Phys. 103, 07B109 (2008)CrossRefGoogle Scholar
  23. 23.
    Fishman, R.S.: Phys. Rev. B 85, 024411 (2012)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pachoud, E., Martin, C., Kundys, B., et al.: J. Solid State Chem. 183, 344 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Cieslak, J., Dubiel, S.M.: Nucl. Inst. Methods Phys. Res. B 95, 131 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • I. Presniakov
    • 1
  • V. Rusakov
    • 1
  • A. Sobolev
    • 1
  • A. Gapochka
    • 1
  • M. Matsnev
    • 1
  • A. A. Belik
    • 2
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations