Advertisement

Hyperfine Interactions

, Volume 224, Issue 1–3, pp 99–107 | Cite as

Mössbauer study of a Fe3O4/PMMA nanocomposite synthesized by sonochemistry

  • H. Martínez
  • L. D’Onofrio
  • G. González
Article

Abstract

Magnetite nanoparticles of 10 nm average size were synthesized by ultrasonic waves from the chemical reaction and precipitation of ferrous and ferric iron chloride (FeCl3 · 6H2O y FeCl2 · 4H2O) in a basic medium. The formation and the incorporation of the magnetite in PMMA were followed by XRD and Mössbauer Spectroscopy. These magnetite nanoparticles were subsequently incorporated into the polymer by ultrasonic waves in order to obtain the final sample of 5 % weight Fe3O4 into the polymethylmethacrylate (PMMA). Both samples Fe3O4 nanoparticles and 5 % Fe3O4/PMMA nanocomposite, were studied by Mössbauer spectroscopy in the temperature range of 300 K–77 K. In the case of room temperature, the Mössbauer spectrum of the Fe3O4 nanoparticles sample was fitted with two magnetic histograms, one corresponding to the tetrahedral sites (Fe3 + ) and the other to the octahedral sites (Fe3 +  and Fe2 + ), while the 5 % Fe3O4/PMMA sample was fitted with two histograms as before and a singlet subspectrum related to a superparamagnetic behavior, caused by the dispersion of the nanoparticles into the polymer. The 77 K Mössabuer spectra for both samples were fitted with five magnetic subspectra similar to the bulk magnetite and for the 5 % Fe3O4/PMMA sample it was needed to add also a superparamagnetic singlet. Additionally, a study of the Verwey transition has been done and it was observed a different behavior compared with that of bulk magnetite.

Nanocomposites Magnetite Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skomski, R.: Nanomagnetics, topical review. J. Phys. Condens. Matter 15, R841–R896 (2003)CrossRefGoogle Scholar
  2. 2.
    Bahadur, D., Giri, J.: Biomaterials and magnetism. Sadhana 28, 639–656 (2003)CrossRefGoogle Scholar
  3. 3.
    Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., von Rechenberg, B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Matter. 293, 483–496 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Berry, F.J., Skinner, S., Thomas, M.F.: Fe57 Mössbauer spectroscopic examination of a single crystal of Fe3O4. J. Phys. Condens. Matter 10, 215–220 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Doriguetto, A.C., Fernandes, N.G., Persiano, A.I.C., Nunes Filho, E., Greneche, J.M., Fabris, J.D.: Characterization of a natural magnetite. Phys. Chem. Miner. 30, 249–255 (2003)ADSGoogle Scholar
  6. 6.
    Vandenberghe, R.E., De Grave, E., Landuydt, C., Bowen, L.H.: Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays. Hyperfine Int. 53, 175–196 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Szabó, D., Czakó-Nagy, I., Zrinyi, M., Vértes, A.: Magnetic and Mössbauer studies of magnetite—loaded polyvinyl alcohol hydrogels. J. Colloid Interface Sci. 221, 166–172 (2000)CrossRefGoogle Scholar
  8. 8.
    Muxworthy, A.R., McClealland, E.: Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys. J. Int. 140, 101–114 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Pasternak, M.P., Xu, W.M., Rozenberg, G.K., Taylor, R.D., Jeanloz, R.: Presured—induced coordination in magnetite; the breakdown of the Verwey—Mott localization hypothesis. J. Magn. Magn. Mater. 265, L107–L112 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Rozenberg, G.K., Pasternak, M.P., Xu, W.M., Amiel, Y., Hanfland, M.: Origin of the verwey transition in magnetite. Phys. Rev. Lett. 96, 045705-1–045705-4 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centro de Física Experimental del Sólido, Escuela de Física, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Centro de Materiales y NanotecnologíaInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela

Personalised recommendations