Advertisement

Hyperfine Interactions

, Volume 215, Issue 1–3, pp 85–93 | Cite as

Direct neutrino mass measurements

  • Christian Weinheimer
Article

Abstract

Direct neutrino mass experiments are complementary to searches for neutrinoless double β-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c2 . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c2 by increasing strongly the statistics and—at the same time—reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium β-decay experiments cryo-bolometers investigating the endpoint region of 187Re β-decay or the electron capture of 163Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

Keywords

Neutrino mass β-decay Electron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fogli, G.L., et al.: Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. arXiv:1205.5254v3
  2. 2.
    Abazajian, K.N., et al.: Cosmological and astrophysical neutrino mass measurements. Astropart. Phys. 35, 177 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Klapdor-Kleingrothaus, H.V., Krivosheina, I.V.: The evidence for the observation of 0νβ β decay: the identification of 0νβ β events from the full spectra. Mod. Phys. Lett. A 21, 1547 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Auger, M., et al.: Search for neutrinoless double-beta decay in 136Xe with EXO-200. arXiv:1205.5608v1
  5. 5.
    Loredo, T.J., Lamb, D.Q.: Bayesian analysis of neutrinos observed from supernova SN 1987A. Phys. Rev. D 65, 063002 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Pagliarolia, G., Rossi-Torresa, F., Vissania, F.: Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission. Astropart. Phys. 33, 287 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Otten, E.W., Weinheimer, C.: Neutrino mass limit from tritium beta decay. Rep. Prog. Phys. 71, 086201 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C.: Current direct neutrino mass experiments. Adv. High Energy Phys. 2013, 293986 (2013)Google Scholar
  9. 9.
    Kraus, C., et al.: Final results from phase II of the Mainz neutrino mass search in tritium β decay. Eur. Phys. J. C 40, 447–468 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Aseev, V.N., et al.: Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D 84, 112003 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Lobashev, V.M., et al.: Phys. Lett. B 460, 227–235 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Angrik, J., et al., KATRIN Collaboration: KATRIN Design Report 2004. Wissenschaftliche Berichte, FZ Karlsruhe 7090Google Scholar
  13. 13.
    Grohmann, S., et al.: Precise temperature measurement at 30 K in the KATRIN source cryostat. Cryogenics 51(8), 438–445 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Lukic, S., et al.: Measurement of the gas-flow reduction factor of the KATRIN DPS2-F differential pumping section. Vacuum 86(8), 1126–1133 (2012)CrossRefGoogle Scholar
  15. 15.
    Ubieto-Díaz, M., et al.: A broad-band FT-ICR Penning trap system for KATRIN. Int. J. Mass Spectrom. 288, 1–5 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Kazachenko, O., et al.: TRAP—a cryo-pump for pumping tritium on pre-condensed argon. Nucl. Instrum. Methods A 587, 136 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Prall M., et al.: The KATRIN pre-spectrometer at reduced filter energy. New J. Phys. 14, 073054 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Picard A., et al.: A solenoid retarding spectrometer with high resolution and transmission for keV electrons. Nucl. Instrum. Methods B 63, 345 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Luo, X., Bornschein, L., Day, C., Wolf, J.: KATRIN NEG pumping concept investigation. Vacuum 81, 777 (2007)CrossRefGoogle Scholar
  20. 20.
    Thümmler, T., et al.: Precision high voltage divider for the KATRIN experiment. New J. Phys. 11, 103007 (2009)CrossRefGoogle Scholar
  21. 21.
    Venos, D., et al.: Development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV. Measurement Techniques 53, 573 (2010)CrossRefGoogle Scholar
  22. 22.
    Flatt, B.: Voruntersuchungen zu den Spektrometern des KATRIN-Experiments. PhD Thesis in German language, Mainz University (2005)Google Scholar
  23. 23.
    Valerius, K.: The wire electrode system for the KATRIN main spectrometer. Prog. Part. Nucl. Phys. 64(2), 291–293 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Fränkle, F.M., et al.: Radon induced background processes in the KATRIN pre-spectrometer. Astropart. Phys. 35, 128–134 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Mertens, S., et al.: Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity. Astropart. Phys. 41, 52–62 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Beck, M., et al.: Effect of a sweeping conductive wire on electrons stored in a Penning-like trap between the KATRIN spectrometers. Eur. Phys. J. A 44, 499 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Hillen, B.: Untersuchung von Methoden zur Unterdruckung des Spektrometeruntergrunds beim KATRIN Experiment. PhD thesis in German language, University of Münster (2011)Google Scholar
  28. 28.
    Mertens, S., et al.: Stochastic heating by ECR as a novel means of background reduction in the KATRIN spectrometers. J. Instr. 7, P08025 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Valerius, K., et al.: Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment. J. Instr. 6, P01002 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Hugenberg, K., KATRIN Collaboration: An angular resolved pulsed UV led photoelectron source for Katrin. Prog. Part. Nucl. Phys. 64, 288 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Babutzka, M., et al.: Monitoring of the Properties of the KATRIN Windowless Gaseous Tritium Source. New J. Phys. 14, 103046 (2012). doi: 10.1088/1367-2630/14/10/103046 ADSCrossRefGoogle Scholar
  32. 32.
    Sturm, M., et al.: Monitoring of all hydrogen isotopologues at tritium laboratory Karlsruhe using Raman spectroscopy. Laser Phys. 20, 493–507 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Sejersen-Riis, A., Hannestad, S.: Detecting sterile neutrinos with KATRIN like experiments. JCAP 1475 (2011). doi: 10.1088/1475-7516/2011/02/011
  34. 34.
    Formaggio, J.A., Barrett, J.: Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment. Phys. Lett. B 706(1), 68–71 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Gatti, F., et al.: Detection of environmental fine structure in the low-energy beta-decay spectrum of Re-187. Nature 397, 137 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Gatti, F.: Microcalorimeter measurements. Nucl. Phys. B Proc. Suppl. 91, 293 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    Sisti, M., et al.: New limits from the Milano neutrino mass experiment with thermal microcalorimeters. Nucl. Instrum. Methods A 520, 125–131 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Monfardini, A., et al.: The microcalorimeter arrays for a rhenium experiment (MARE): a next-generation calorimetric neutrino mass experiment. Nucl. Instrum. Methods A 559, 346 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Nucciotti, A.: The MARE project. J. Low Temp. Phys. 151, 597–602 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Ranitzsch, P.C.-O., et al.: Development of metallic magnetic calorimeters for high precision measurements of calorimetric 187Re and 163Ho spectra. J. Low Temp. Phys. 167, 1004 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Ferri, E.: MARE-1 in Milan: status and perspectives. J. Low Temp. Phys. 167, 1035 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Monreal, B., Formaggio, J.: Relativistic cyclotron radiation detection of tritium decay electrons as a new technique for measuring the neutrino mass. Phys. Rev. D 80, 051301(R) (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Formaggio, J.: Project 8: using radio-frequency techniques to measure neutrino mass (2011). arXiv:1101.6077v1 [nucl-ex]

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für KernphysikWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations