Skip to main content
Log in

Direct neutrino mass measurements

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Direct neutrino mass experiments are complementary to searches for neutrinoless double β-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c2 . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c2 by increasing strongly the statistics and—at the same time—reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium β-decay experiments cryo-bolometers investigating the endpoint region of 187Re β-decay or the electron capture of 163Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fogli, G.L., et al.: Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. arXiv:1205.5254v3

  2. Abazajian, K.N., et al.: Cosmological and astrophysical neutrino mass measurements. Astropart. Phys. 35, 177 (2011)

    Article  ADS  Google Scholar 

  3. Klapdor-Kleingrothaus, H.V., Krivosheina, I.V.: The evidence for the observation of 0νβ β decay: the identification of 0νβ β events from the full spectra. Mod. Phys. Lett. A 21, 1547 (2006)

    Article  ADS  Google Scholar 

  4. Auger, M., et al.: Search for neutrinoless double-beta decay in 136Xe with EXO-200. arXiv:1205.5608v1

  5. Loredo, T.J., Lamb, D.Q.: Bayesian analysis of neutrinos observed from supernova SN 1987A. Phys. Rev. D 65, 063002 (2002)

    Article  ADS  Google Scholar 

  6. Pagliarolia, G., Rossi-Torresa, F., Vissania, F.: Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission. Astropart. Phys. 33, 287 (2010)

    Article  ADS  Google Scholar 

  7. Otten, E.W., Weinheimer, C.: Neutrino mass limit from tritium beta decay. Rep. Prog. Phys. 71, 086201 (2008)

    Article  ADS  Google Scholar 

  8. Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C.: Current direct neutrino mass experiments. Adv. High Energy Phys. 2013, 293986 (2013)

    Google Scholar 

  9. Kraus, C., et al.: Final results from phase II of the Mainz neutrino mass search in tritium β decay. Eur. Phys. J. C 40, 447–468 (2005)

    Article  ADS  Google Scholar 

  10. Aseev, V.N., et al.: Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D 84, 112003 (2011)

    Article  ADS  Google Scholar 

  11. Lobashev, V.M., et al.: Phys. Lett. B 460, 227–235 (1999)

    Article  ADS  Google Scholar 

  12. Angrik, J., et al., KATRIN Collaboration: KATRIN Design Report 2004. Wissenschaftliche Berichte, FZ Karlsruhe 7090

  13. Grohmann, S., et al.: Precise temperature measurement at 30 K in the KATRIN source cryostat. Cryogenics 51(8), 438–445 (2011)

    Article  ADS  Google Scholar 

  14. Lukic, S., et al.: Measurement of the gas-flow reduction factor of the KATRIN DPS2-F differential pumping section. Vacuum 86(8), 1126–1133 (2012)

    Article  Google Scholar 

  15. Ubieto-Díaz, M., et al.: A broad-band FT-ICR Penning trap system for KATRIN. Int. J. Mass Spectrom. 288, 1–5 (2009)

    Article  ADS  Google Scholar 

  16. Kazachenko, O., et al.: TRAP—a cryo-pump for pumping tritium on pre-condensed argon. Nucl. Instrum. Methods A 587, 136 (2008)

    Article  ADS  Google Scholar 

  17. Prall M., et al.: The KATRIN pre-spectrometer at reduced filter energy. New J. Phys. 14, 073054 (2012)

    Article  ADS  Google Scholar 

  18. Picard A., et al.: A solenoid retarding spectrometer with high resolution and transmission for keV electrons. Nucl. Instrum. Methods B 63, 345 (1992)

    Article  ADS  Google Scholar 

  19. Luo, X., Bornschein, L., Day, C., Wolf, J.: KATRIN NEG pumping concept investigation. Vacuum 81, 777 (2007)

    Article  Google Scholar 

  20. Thümmler, T., et al.: Precision high voltage divider for the KATRIN experiment. New J. Phys. 11, 103007 (2009)

    Article  Google Scholar 

  21. Venos, D., et al.: Development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV. Measurement Techniques 53, 573 (2010)

    Article  Google Scholar 

  22. Flatt, B.: Voruntersuchungen zu den Spektrometern des KATRIN-Experiments. PhD Thesis in German language, Mainz University (2005)

  23. Valerius, K.: The wire electrode system for the KATRIN main spectrometer. Prog. Part. Nucl. Phys. 64(2), 291–293 (2010)

    Article  ADS  Google Scholar 

  24. Fränkle, F.M., et al.: Radon induced background processes in the KATRIN pre-spectrometer. Astropart. Phys. 35, 128–134 (2011)

    Article  ADS  Google Scholar 

  25. Mertens, S., et al.: Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity. Astropart. Phys. 41, 52–62 (2012)

    Article  ADS  Google Scholar 

  26. Beck, M., et al.: Effect of a sweeping conductive wire on electrons stored in a Penning-like trap between the KATRIN spectrometers. Eur. Phys. J. A 44, 499 (2010)

    Article  ADS  Google Scholar 

  27. Hillen, B.: Untersuchung von Methoden zur Unterdruckung des Spektrometeruntergrunds beim KATRIN Experiment. PhD thesis in German language, University of Münster (2011)

  28. Mertens, S., et al.: Stochastic heating by ECR as a novel means of background reduction in the KATRIN spectrometers. J. Instr. 7, P08025 (2012)

    Article  ADS  Google Scholar 

  29. Valerius, K., et al.: Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment. J. Instr. 6, P01002 (2011)

    Article  ADS  Google Scholar 

  30. Hugenberg, K., KATRIN Collaboration: An angular resolved pulsed UV led photoelectron source for Katrin. Prog. Part. Nucl. Phys. 64, 288 (2010)

    Article  ADS  Google Scholar 

  31. Babutzka, M., et al.: Monitoring of the Properties of the KATRIN Windowless Gaseous Tritium Source. New J. Phys. 14, 103046 (2012). doi:10.1088/1367-2630/14/10/103046

    Article  ADS  Google Scholar 

  32. Sturm, M., et al.: Monitoring of all hydrogen isotopologues at tritium laboratory Karlsruhe using Raman spectroscopy. Laser Phys. 20, 493–507 (2010)

    Article  ADS  Google Scholar 

  33. Sejersen-Riis, A., Hannestad, S.: Detecting sterile neutrinos with KATRIN like experiments. JCAP 1475 (2011). doi:10.1088/1475-7516/2011/02/011

  34. Formaggio, J.A., Barrett, J.: Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment. Phys. Lett. B 706(1), 68–71 (2011)

    Article  ADS  Google Scholar 

  35. Gatti, F., et al.: Detection of environmental fine structure in the low-energy beta-decay spectrum of Re-187. Nature 397, 137 (1999)

    Article  ADS  Google Scholar 

  36. Gatti, F.: Microcalorimeter measurements. Nucl. Phys. B Proc. Suppl. 91, 293 (2001)

    Article  ADS  Google Scholar 

  37. Sisti, M., et al.: New limits from the Milano neutrino mass experiment with thermal microcalorimeters. Nucl. Instrum. Methods A 520, 125–131 (2004)

    Article  ADS  Google Scholar 

  38. Monfardini, A., et al.: The microcalorimeter arrays for a rhenium experiment (MARE): a next-generation calorimetric neutrino mass experiment. Nucl. Instrum. Methods A 559, 346 (2006)

    Article  ADS  Google Scholar 

  39. Nucciotti, A.: The MARE project. J. Low Temp. Phys. 151, 597–602 (2008)

    Article  ADS  Google Scholar 

  40. Ranitzsch, P.C.-O., et al.: Development of metallic magnetic calorimeters for high precision measurements of calorimetric 187Re and 163Ho spectra. J. Low Temp. Phys. 167, 1004 (2012)

    Article  ADS  Google Scholar 

  41. Ferri, E.: MARE-1 in Milan: status and perspectives. J. Low Temp. Phys. 167, 1035 (2012)

    Article  ADS  Google Scholar 

  42. Monreal, B., Formaggio, J.: Relativistic cyclotron radiation detection of tritium decay electrons as a new technique for measuring the neutrino mass. Phys. Rev. D 80, 051301(R) (2009)

    Article  ADS  Google Scholar 

  43. Formaggio, J.: Project 8: using radio-frequency techniques to measure neutrino mass (2011). arXiv:1101.6077v1 [nucl-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weinheimer.

Additional information

The 5th international symposium on Symmetries in Subatomic Physics (SSP 2012), Groningen, The Netherlands, 18–22 June 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinheimer, C. Direct neutrino mass measurements. Hyperfine Interact 215, 85–93 (2013). https://doi.org/10.1007/s10751-013-0808-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0808-7

Keywords

Navigation