Skip to main content
Log in

Measurement of permanent electric dipole moments of charged hadrons in storage rings

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance (\(\mathcal{T}\)) and parity (\(\mathcal{P}\)). Assuming the \(\mathcal{CPT}\) theorem this implies \(\mathcal{CP}\) violation. The \(\mathcal{CP}\) violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of \(\mathcal{CP}\) violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Jülich with an ultimate goal to reach a sensitivity of 10 − 29 e·cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spergel, D.N., et al., WMAP Collaboration: Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]

    Article  Google Scholar 

  2. Sakharov, A.D.: Pisma Z. Eksp. Teor. Fiz. 5, 32 (1967)

    Google Scholar 

  3. Sakharov, A.D.: JETP Lett. 5, 24 (1967)

    ADS  Google Scholar 

  4. Sakharov, A.D.: Sov. Phys. Usp. 34, 392 (1991)

    Article  ADS  Google Scholar 

  5. Sakharov, A.D.: Usp. Fiz. Nauk 161, 61 (1991)

    Google Scholar 

  6. Pendlebury, J.M., Hinds, E.A.: Nucl. Instrum. Methods A 440, 471 (2000)

    Article  ADS  Google Scholar 

  7. Fukuyama, T.: Int. J. Mod. Phys. A 27, 1230015 (2012). arXiv:1201.4252 [hep-ph]

    Article  ADS  Google Scholar 

  8. de Vries, J., Higa, R., Liu, C.-P., Mereghetti, E., Stetcu, I., Timmermans, R.G.E., van Kolck, U.: Phys. Rev., C 84, 065501 (2011). arXiv:1109.3604 [hep-ph]

    Article  Google Scholar 

  9. Bsaisou, J., Hanhart, C., Liebig, S., Meissner, U.-G., Nogga, A., Wirzba, A.: arXiv:1209.6306 [hep-ph]

  10. de Vries, J.: These proceedings

  11. Guo, F.-K., Meissner, U.-G.: Baryon electric dipole moments from strong CP violation. J. High Energy Phys. 1212, 97 (2012)

    Article  ADS  Google Scholar 

  12. Le Dall, M., Ritz, A.: These proceedings

  13. Onderwater, C.J.G.: arXiv:1204.2512 [hep-ex]

  14. Baker, C.A., Doyle, D.D., Geltenbort, P., Green, K., van der Grinten, M.G.D., Harris, P.G., Iaydjiev, P., Ivanov, S.N., et al.: Phys. Rev. Lett. 97, 131801 (2006) [hep-ex/0602020]

    Article  ADS  Google Scholar 

  15. Griffith, W.C., Swallows, M.D., Loftus, T.H., Romalis, M.V., Heckel, B.R., Fortson, E.N.: Phys. Rev. Lett. 102, 101601 (2009)

    Article  ADS  Google Scholar 

  16. Farley, F.J.M., Jungmann, K., Miller, J.P., Morse, W.M., Orlov, Y.F., Roberts, B.L., Semertzidis, Y.K., Silenko, A., et al.: Phys. Rev. Lett. 93, 052001 (2004) [hep-ex/0307006]

    Article  ADS  Google Scholar 

  17. Semertzidis, Y.K.: Lect. Notes Phys. 741, 97–113 (2008)

    Article  ADS  Google Scholar 

  18. Pondrom, L., Handler, R., Sheaff, M., Cox, P.T., Dworkin, J., Overseth, O.E., Devlin, T., Schachinger, L., et al.: Phys. Rev., D 23, 814 (1981)

    Article  ADS  Google Scholar 

  19. Bennett, G.W., et al., Muon (g-2) Collaboration: Phys. Rev., D 80, 052008 (2009). arXiv:0811.1207 [hep-ex]

    Article  Google Scholar 

  20. Thomas, L.H.: Phila. Mag. 3, 1 (1927)

    MATH  Google Scholar 

  21. Bargmann, V., Michel, L., Telegdi, V.L.: Phys. Rev. Lett. 2, 435 (1959)

    Article  ADS  Google Scholar 

  22. A Proposal to Measure the Proton Electric Dipole Moment with 10 − 29 e·cm Sensitivity, Storage Ring EDM Collaboration BNL (2011)

  23. JEDI Proposal: Search for Permanent Electric Dipole Moments at COSY—step 1: spin coherence and systematic error studies, JEDI Collaboration. http://www2.fz-juelich.de/ikp/jedi/documents/proposals.shtml. Accessed Dec 2012

  24. Lehrach, A., Lorentz, B., Morse, W., Nikolaev, N., Rathmann, F.: arXiv:1201.5773 [hep-ex]

  25. Semertzidis, Y.K.: J. Phys. Conf. Ser. 335, 012012 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jörg Pretz.

Additional information

The 5th International Symposium on Symmetries in Subatomic Physics (SSP 2012), Groningen, The Netherlands, 18–22 June 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretz, J., on behalf of the JEDI collaboration. Measurement of permanent electric dipole moments of charged hadrons in storage rings. Hyperfine Interact 214, 111–117 (2013). https://doi.org/10.1007/s10751-013-0799-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0799-4

Keywords

Navigation