Advertisement

Hyperfine Interactions

, Volume 214, Issue 1–3, pp 181–188 | Cite as

Precision measurements in nuclear beta decay

  • Oscar Naviliat-Cuncic
Article
  • 102 Downloads

Abstract

Precision measurements in nuclear beta decay provide sensitive means to determine the fundamental coupling of charged fermions to weak bosons and to test discrete symmetries in the weak interaction. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. I focus here on two topics related to precision measurements in beta decay, namely: (i) the determination of the V ud element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and (ii) selected measurements of time reversal violating correlations in nuclear and neutron decays. These topics complement those presented in other contributions to this conference.

Keywords

Tests of fundamental symmetries Precision measurements in nuclear beta decay and neutron decay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Severijns, N., Beck, M., Naviliat-Cuncic, O.: Rev. Mod. Phys. 78, 991 (2006) and references thereinADSCrossRefGoogle Scholar
  2. 2.
    Abele, H.: Prog. Part. Nucl. Phys. 60, 1 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Nico, J.: J. Phys. G: Nucl. Part. Phys. 36, 104001 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Severijns, N., Naviliat-Cuncic, O.: Annu. Rev. Nucl. Part Sci. 61, 23 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Bhattacharya, T., et al.: Phys. Rev. D 85, 054512 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Naviliat-Cuncic, O., Severijns, N.: Phys. Rev. Lett. 102, 142302 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Towner, I.S., Hardy, J.C.: Rep. Prog. Phys. 73, 046301 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Severijns, N., Tandecki, M., Phalet, T., Towner, I.S.: Phys. Rev. C 78, 055501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Broussard, L.J.: Ph.D. Disertation, Duke University (2012, unpublished)Google Scholar
  10. 10.
    Triambak, S., et al.: Phys. Rev. Lett. 109, 042301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Ujić, P., et al.: Phys. Rev. Lett. 110, 032501 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Bacquias, A., et al.: Eur. Phys. J. A. 48, 155 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Kankainen, A., et al.: Phys. Rev. C 82, 052501(R) (2010)ADSGoogle Scholar
  14. 14.
    Couratin, C., et al.: Phys. Rev. Lett. 108, 243201 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Minamisono, K., et al.: submitted for publicationGoogle Scholar
  16. 16.
    Jackson, J.D., Treiman, S.B., Wyld, H.W. Jr.: Phys. Rev. 106, 517 (1957)ADSCrossRefGoogle Scholar
  17. 17.
    Jackson, J.D., Treiman, S.B., Wyld, H.W. Jr.: Nucl. Phys. 4, 206 (1957)CrossRefGoogle Scholar
  18. 18.
    Kozela, A., et al.: Phys. Rev. C 85, 045501 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Herczeg, P.: Prog. Part Nucl. Phys. 46, 413 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Huber, R., et al.: Phys. Rev. Lett. 90, 202301 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Murata, J., et al.: J. Phys.: Conf. Ser. 312, 102011 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Gardner, S., He, D.: arXiv:1202.5239v1 [hep-ph] (2012)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.National Superconducting Cyclotron Laboratory and Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations