Skip to main content
Log in

T-odd momentum correlation in radiative β decay

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The triple-product correlations observable in ordinary neutron or nuclear beta decay are all naively T violating and can connect, through an assumption of CPT invariance, to constraints on sources of CP violation beyond the Standard Model. They are also spin dependent. In this context the study of radiative beta decay opens a new possibility, in that a triple-product correlation can be constructed from momenta alone. Consequently its measurement would constrain new spin-independent sources of CP violation. We will describe these in light of the size of the triple momentum correlation in the decay rate arising from electromagnetic final-state interactions in the Standard Model. Our expression for the corresponding T-odd asymmetry is exact in \({\cal O}(\alpha)\) up to terms of recoil order, and we evaluate it numerically under various kinematic conditions. We consider the pattern of the asymmetries in nuclear β decays and show that the asymmetry can be suppressed in particular cases, facilitating searches for new sources of CP violation in such processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfenstein, L.: Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  2. Buras, A.J., Lautenbacher, M.E., Ostermaier, G.: Phys. Rev. D 50, 3433 (1994)

    Article  ADS  Google Scholar 

  3. Charles, J., et al.: Eur. Phys. J. C 41, 1 (2005). http://ckmfitter.in2p3.fr

  4. Isidori, G., Nir, Y., Perez, G.: Annu. Rev. Nucl. Part. Sci. 60, 355 (2010)

    Article  ADS  Google Scholar 

  5. Bona, M., et al.: SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual Design Report (2007). arXiv:0709.0451 [hep-ex]

  6. Abe, T., et al.: Belle II Technical Design Report (2010). arXiv:1011.0352

  7. Sachs, R.G.: The Physics of Time Reversal, p. 112ff. University of Chicago Press, Chicago (1985)

    Google Scholar 

  8. Herczeg, P.: J. Res. Natl. Inst. Stand. Technol. 110, 453 (2005)

    Article  Google Scholar 

  9. Ng, J., Tulin, S.: Phys. Rev. D 85, 033001 (2012)

    Article  ADS  Google Scholar 

  10. Adler, S.L.: Phys. Rev. 177, 2426 (1969)

    Article  ADS  Google Scholar 

  11. Bardeen, W.A.: Phys. Rev. 184, 1848 (1969)

    Article  ADS  Google Scholar 

  12. Harvey, J.A., Hill, C.T., Hill, R.J.: Phys. Rev. Lett. 99, 261601 (2007)

    Article  ADS  Google Scholar 

  13. Harvey, J.A., Hill, C.T., Hill, R.J.: Phys. Rev. D 77, 085017 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hill, R.J.: Phys. Rev. D 81, 013008 (2010)

    Article  ADS  Google Scholar 

  15. Nico, J.S., et al.: Nature 444, 1059 (2006)

    Article  ADS  Google Scholar 

  16. Cooper, R.L., et al.: Phys. Rev. C 81, 035503 (2010)

    Article  ADS  Google Scholar 

  17. Mumm, H.P., et al.: Phys. Rev. Lett. 107, 102301 (2011)

    Article  ADS  Google Scholar 

  18. Chupp, T.E., et al.: Phys. Rev. C 86, 035505 (2012)

    Article  ADS  Google Scholar 

  19. Okun, L.B.: JETP Lett. 31, 144 (1980)

    ADS  Google Scholar 

  20. Kang, J., Luty, M.A.: J. High Energy Phys. 0911, 065 (2009)

    Article  ADS  Google Scholar 

  21. Blennow, M., Dasgupta, B., Fernandez-Martinez, E., Rius, N.: J. High Energy Phys. 1103, 014 (2011)

    Article  ADS  Google Scholar 

  22. Shelton, J., Zurek, K.M.: Phys. Rev. D 82, 123512 (2010)

    Article  ADS  Google Scholar 

  23. Davoudiasl, H., Morrissey, D.E., Sigurdson, K., Tulin, S.: Phys. Rev. Lett. 105, 211304 (2010)

    Article  ADS  Google Scholar 

  24. Haba, N., Matsumoto, S.: Prog. Theor. Phys. 125, 1311 (2011)

    Article  ADS  Google Scholar 

  25. Buckley, M.R., Randall, L.: J. High Energy Phys. 1109, 009 (2011)

    Article  ADS  Google Scholar 

  26. Bernard, V., Gardner, S., Meißner, U.-G., Zhang, C.: Phys. Lett. B 593, 105 (2004) [Erratum-ibid. B 599, 348 (2004)] and references therein

    Article  ADS  Google Scholar 

  27. Gardner, S., He, D.: Phys. Rev. D 86, 016003 (2012)

    Article  ADS  Google Scholar 

  28. Low, F.E.: Phys. Rev. 110, 974 (1958)

    Article  ADS  MATH  Google Scholar 

  29. Gardner, S., He, D.: Radiative β decay for studies of CP violation (2013)

  30. Callan, C.G., Treiman, S.B.: Phys. Rev. 162, 1494 (1967)

    Article  ADS  Google Scholar 

  31. Okun, L.B., Khriplovich, I.B.: Sov. J. Nucl. Phys. 6, 598 (1968)

    Google Scholar 

  32. Braguta, V.V., Likhoded, A.A., Chalov, A.E.: Phys. Rev. D 65, 054038 (2002)

    Article  ADS  Google Scholar 

  33. Khriplovich, I.B., Rudenko, A.S.: Phys. Atoms Nucl. 74, 1214 (2011)

    Article  ADS  Google Scholar 

  34. Müller, E.H., Kubis, B., Meißner, U.-G.: Eur. Phys. J. C 48, 427 (2006)

    Article  ADS  Google Scholar 

  35. Gardner, S., He, D.: T-odd Momentum correlation in nuclear radiative β decay (2013)

  36. Cutkosky, R.E.: J. Math. Phys. 1, 429 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Wildenthal, B.H., Curtin, M.S., Brown, B.A.: Phys. Rev. C 28, 1343 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Gardner.

Additional information

We acknowledge partial support from the U.S. Department of Energy under contract no. DE-FG02-96ER40989.

The 5th International Symposium on Symmetries in Subatomic Physics (SSP 2012), Groningen, The Netherlands, 18–22 June 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, S., He, D. T-odd momentum correlation in radiative β decay. Hyperfine Interact 214, 71–78 (2013). https://doi.org/10.1007/s10751-013-0781-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0781-1

Keywords

Navigation