Advertisement

Hyperfine Interactions

, Volume 217, Issue 1–3, pp 99–105 | Cite as

Mössbauer and x-ray absorption studies in Fe and V co-doped SnO2

  • Jun Okabayashi
  • Shin Kono
  • Yasuhiro Yamada
  • Kiyoshi Nomura
Article

Abstract

Ferromagnetic nanoparticles of iron and vanadium co-doped SnO2 were synthesized by a sol-gel method. Fe and V co-doped SnO2 enhanced the magnetization, which showed the maximum saturation magnetization (Ms) at 1 % of Fe and 1 % of V co-doping. With further increasing the amounts of Fe and V co-doping into SnO2 host, the Ms decreased. Chemical states of vanadium ions were deduced as V5+ states by x-ray absorption spectroscopy. Mössbauer spectrometry revealed that the intensities of sextet components are related to the Ms, which indicates that small amounts of Fe and V co-doping is effective to enhance Ms.

Keywords

Diluted magnetism Mössbauer spectrometry Magnetization Co-doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Punnoose, A., Hays, J., Thurber, A., Engelhard, M.H., Kukkadapu, R.K., Wang, C., Shuthanandan, V., Thevuthasan, S.: Phys. Rev. B 72, 054402 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Nomura, K., Barrero, C.A., Sakuma, J., Takeda, M.: Phys. Rev. B 75, 184411 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, L., Ge, S., Zuo, Y., Zhou, X., Xiao, Y., Yan, S., Han, X., Wen, Z.: J. Appl. Phys. 104, 123909 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, J., Skomski, R., Yue, L.P., Sellmyer, D.J.: J. Phys., Condens. Matter 19, 256204 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Hong, N.H., Sakai, J.: Phys. B 358, 265 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Melghit, K., Bouziane, K.: J. Am. Ceram. Soc. 90, 2420 (2007)CrossRefGoogle Scholar
  7. 7.
    Egdell, R.G., Gulino, A., Rayden, C., Peacock, G., Cos, P.A.: J. Mater. Chem. 5, 499 (1995)CrossRefGoogle Scholar
  8. 8.
    Murphy, D.M., Farley, R.D., Marshall, J., Willock, D.J.: Chem. Phys. Lett. 391, 1 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Das, S., Chakraborty, S., Parkash, O., Kumar, D., Bandyopadhyay, S., Samudrala, S.K., Sen, A., Maiti, H.S.: Talanta 75, 385 (2008)CrossRefGoogle Scholar
  10. 10.
    Han, S.D., Yang, H., Wang, L., Kim, J.W.: Sens. Actuators B 66, 112 (2000)CrossRefGoogle Scholar
  11. 11.
    Nomura, K., Okabayashi, J., Okamura, K., Yamada, Y.: J. Appl. Phys. 110, 083901 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Kono, S., Nomura, K., Yamada, Y., Okabayashi, J.: Hyperfine Interact. 205, 105 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Okabayashi, J., Nomura, K., Kono, S., Yamada, Y.: Jpn. J. Appl. Phys. 51, 023003 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Havecker, M., Cavalleri, M., Herbert, R., Follath, R., Knop-Gericke, A., Hess, C., Hermann, K., Schlogl, R.: Phys. Status Solidi B 246, 1459 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jun Okabayashi
    • 1
  • Shin Kono
    • 2
  • Yasuhiro Yamada
    • 2
  • Kiyoshi Nomura
    • 3
  1. 1.Research Center for SpectrochemistryThe University of TokyoBunkyo-kuJapan
  2. 2.Department of ChemistryTokyo University of ScienceShinjyuku-kuJapan
  3. 3.Department of Applied ChemistryUniversity of TokyoBunkyo-kuJapan

Personalised recommendations