Hyperfine Interactions

, Volume 204, Issue 1–3, pp 89–96 | Cite as

The collective Lamb shift in nuclear γ-ray superradiance

  • Ralf Röhlsberger


The electromagnetic transitions of Mössbauer nuclei provide almost ideal two-level systems to transfer quantum optical concepts into the regime of hard x-rays. If many identical atoms collectively interact with a resonant radiation field, one observes (quantum) optical properties that are strongly different from those of a single atom. The most prominent effect is the broadening of the resonance line known as collective enhancement, resulting from multiple scattering of real photons within the atomic ensemble. On the other hand, the exchange of virtual photons within the ensemble leads to a tiny energy shift of the resonance line, the collective Lamb shift, that remained experimentally elusive for a long time after its prediction. Here we illustrate how highly brilliant synchrotron radiation allows one to prepare superradiant states of excited Mössbauer nuclei, an important condition for observation of the collective Lamb shift.


Collective Lamb shift Superradiance Mössbauer effect Synchrotron radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hübner, M., Kuhl, J., Stroucken, T., Knorr, A., Koch, S.W., Hey, R., Ploog, K.: Phys. Rev. Lett. 76, 4199 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Scheibner, M., Schmidt, T., Worschech, L., Forchel, A., Bacher, G., Passow, T., Hommel, D.: Nature Phys. 3, 106 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Brandes, T.: Phys. Rep. 408, 315 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Potma, E.O., Wiersma, D.A.: J. Chem. Phys. 108, 4894 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Dicke, R.H.: Phys. Rev. 93, 99 (1954)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Skribanowitz, N., Herman, I.P., Mac Gillivray, J.C., Feld, M.S.: Phys. Rev. Lett. 30, 309 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    Friedberg, R., Hartmann, S.R., Manassah, J.T.: Phys. Rep. C 7, 101 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    Garrett, W.R., Hart, R.C., Wray, J.E., Datskou, I., Payne, M.G.: Phys. Rev. Lett. 64, 1717 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Friedberg, R., Hartmann, S.R., Manassah, J.T.: Phys. Rev. A 39, 93 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    Lamb, Jr., W.E., Retherford, R.C.: Phys. Rev. 72 241 (1947)ADSCrossRefGoogle Scholar
  11. 11.
    Svidzinsky, A.A., Chang, J.-T., Scully, M.O.: Phys. Rev. A 81, 053821 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Friedberg, R., Manassah, J.T.: Phys. Rev. A 84, 023839 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Bonifacio, R., Lugiato, L.A.: Phys. Rev. A 11, 1507 (1975a)ADSCrossRefGoogle Scholar
  14. 14.
    Bonifacio, R., Lugiato, L.A.: Phys. Rev. A 12, 587 (1975b)ADSCrossRefGoogle Scholar
  15. 15.
    Hannon, J.P., Trammell, G.T.: Hyperfine Interact. 123–124, 127 (1999)CrossRefGoogle Scholar
  16. 16.
    Scully, M.O., Fry, E., Ooi, C.H.R., Wodkiewicz, K.: Phys. Rev. Lett. 96, 010501 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Svidzinsky, A.A., Chang, J.-T.: Phys. Rev. A 77, 043833 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Scully, M.O.: Phys. Rev. Lett. 102, 143601 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Friedberg, R., Manassah, J.T.: Phys. Lett. A 373, 3423 (2009)ADSMATHCrossRefGoogle Scholar
  20. 20.
    Manassah, J.T.: Laser Phys. 20, 259 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Friedberg, R., Manassah, J.T.: Phys. Lett. A 374, 1648 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    van Bürck, U.: Hyperfine Interact. 123/124, 483 (1999)CrossRefGoogle Scholar
  23. 23.
    Röhlsberger, R.: Hyperfine Interact. 123/124, 301 (1999)CrossRefGoogle Scholar
  24. 24.
    Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S., Rüffer, R.: Science 328, 1248 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Deutsches Elektronen Synchrotron DESYHamburgGermany

Personalised recommendations