Advertisement

Hyperfine Interactions

, Volume 201, Issue 1–3, pp 25–29 | Cite as

The Lead Radius Experiment PREX

  • R. Michaels
Article
  • 47 Downloads

Abstract

The Lead Radius Experiment PREX will run in Spring of 2010. The experiment measures the parity-violating asymmetry in the elastic scattering of polarized electrons from a lead nucleus at an energy of 1.05 GeV and a scattering angle of 5°. The Z 0 boson couples mainly to neutrons, and provides a clean measurement of R n with a projected experimental precision of ±1%. The measurement is a fundamental test of nuclear theory and pins down the density-dependence of the symmetry energy of neutron rich nuclear matter which has impacts on neutron star structure, heavy ion collisions, and atomic parity violation experiments. Recent developments in the experiment are described.

Keywords

Mass and neutron distributions Elastic electron scattering Parity Violation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michaels, R.: In: Proceedings of PAVI02 and PAVI06Google Scholar
  2. 2.
    Donnelly, T.W., Dubach, J., Sick, I.: Isospin dependences in parity violating electron scattering. Nucl. Phys. A503, 589 (1989)ADSGoogle Scholar
  3. 3.
    de Vries, H., de Jager, C.W., de Vries, C.: Nuclear charge and magnetization density distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 36, 495 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Horowitz, C.J.: Parity violating elastic electron scattering and Coulomb distortions. Phys. Rev. C57, 3430 (1998)ADSGoogle Scholar
  5. 5.
    Todd-Rutel, B.G., Piekarewicz, J.: Neutron-rich nuclei and neutron stars: a new accurately calibrated interaction for the study of neutron-rich matter. Phys. Rev. Lett. 95, 122501 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Roca-Maza, X., Piekarewicz, J.: Impact of the symmetry energy on the outer crust of nonaccreting neutron stars. Phys. Rev. C78, 025807 (2008)ADSGoogle Scholar
  7. 7.
    Lattimer, J., Prakash, M.: Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442, 109 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Horowitz, C.J., Piekarweicz, J.: Neutron star structure and the neutron radius of 208 Pb. Phys. Rev. Lett. 86, 5647 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Horowitz, C.J., Piekarewicz, J.: Neutron radii of 208 Pb and neutron stars. Phys. Rev. C64, 062802 (2001)ADSGoogle Scholar
  10. 10.
    Horowitz, C.J., Piekarewicz, J.: Constraining URCA cooling of neutron stars from the neutron radius of 208Pb. Phys. Rev. C66, 055803 (2002)ADSGoogle Scholar
  11. 11.
    Carriere, J., Horowitz, C.J., Piekarewicz, J.: Low mass neutron stars and the equation of state of dense matter. Astrophys. J. 593, 463 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Slane, P., Helfand, D., Murray, S.: New constraints on neutron star cooling from chandra observations of 3c58. astro-ph/0204151a
  13. 13.
    Lattimer, J.M., Prakash, M.: The physics of neutron stars. Science 304, 536 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Sil, T., Centelles, M., Vinas, X., Piekarewicz, J.: Atomic parity nonconservation, neutron radii, and effective field theories of nuclei. Phys. Rev. C71, 045502 (2005)ADSGoogle Scholar
  15. 15.
    Pollock, S.J., Fortson, E.N., Wilets, L.: Atomic parity nonconservation: electroweak parameters and nuclear structure. Phys. Rev. C46, 2587 (1992)ADSGoogle Scholar
  16. 16.
    Furnstahl, R.J.: Neutron radii in mean field models. Nucl. Phys. A706, 85 (2002)ADSGoogle Scholar
  17. 17.
    Horowitz, C.J., Pollock, S.J., Souder, P.A., Michaels, R.: Parity violating measurements of neutron densities. Phys. Rev. C63, 025501, (2001)ADSGoogle Scholar
  18. 18.
    Vidana, I., et al.: Density dependence of the nuclear symmetry energy: a microscopic perspective. Phys. Rev. C80, 045806 (2009)ADSGoogle Scholar
  19. 19.
    Dong, T., et al.: Neutron skin of 208 Pb and density dependence of the symmetry energy. Phys. Rev. C79, 057301 (2009)Google Scholar
  20. 20.
    Steiner, A.W., Li, B.A.: Isospin diffusion in heavy-ion collisions and the neutron skin thickness of lead. Phys. Rev. C72, 041601 (2005)ADSGoogle Scholar
  21. 21.
    Ono, A., Danielewicz, P., Friedman, W.A., Lynch, W.G., Tsang, M.B.: Symmetry energy for fragmentation in dynamical nuclear collisions. Phys. Rev. C70, 041604 (2004)ADSGoogle Scholar
  22. 22.
    Shetty, D.V., et al.: Symmetry energy and the isospin dependent equation of state. Phys. Rev. C70, 011601 (2004)ADSGoogle Scholar
  23. 23.
    Li, B.A.: Observable effects of symmetry energy in heavy-ion collisions at intermediate energies. Phys. Rev. C69, 034614 (2004)ADSGoogle Scholar
  24. 24.
    Li, B.A.: Constraining the density dependence of nuclear symmetry energy with heavy-ion reactions and its astrophysical impact. arXiv:0806.2355v1 [nucl-th]
  25. 25.
    Steiner, A., Li, B.A., Prakash, M.: Ramifications of the nuclear symmetry energy for neutron stars, nuclei, and heavy-ion collisions. arXiv:0711.4652v1 [nucl-th]
  26. 26.
    Hauger, M., et al.: A high precision polarimeter. Nucl. Instrum. Methods A462, 382 (2001)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Jefferson LabNewport NewsUSA

Personalised recommendations