Hyperfine Interactions

, Volume 198, Issue 1–3, pp 73–83 | Cite as

Recent developments in collinear laser spectroscopy at COLLAPS/ISOLDE

  • Wilfried Nörtershäuser


Collinear laser spectroscopy (CLS) provides fast, sensitive and accurate means for the determination of nuclear ground state properties via optical isotope shift and hyperfine structure measurements. Recent developments at COLLAPS, the CLS setup at ISOLDE, are summarized. This includes the use of the ISCOOL cooler and buncher for studies on gallium and copper isotopes and frequency-comb-based CLS with quasi-simultaneous collinear and anticollinear measurements on beryllium isotopes.


Laser spectroscopy Nuclear ground state properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otten, E.W.: Nuclear radii and moments of unstable isotopes. In: Treatise on Heavy-ion Science, vol. 8. Plenum Publishing Corporation (1989)Google Scholar
  2. 2.
    Kopfermann, H.: Nuclear Moments. Academic Press, New York (1958)Google Scholar
  3. 3.
    Kaufmann, S.L.: High-resolution laser spectroscopy in fast beams. Opt. Commun. 17, 309–312 (1976)CrossRefADSGoogle Scholar
  4. 4.
    Schinzler, B., et al.: Collinear laser spectroscopy of neutron rich Cs isotopes at an on-line mass separator. Phys. Lett., B 79, 209–212 (1978)CrossRefADSGoogle Scholar
  5. 5.
    Müller, A.C., et al.: Spins, moments and charge radii of barium isotopes in the range 122 − 146Ba determined by collinear fast-beam laser spectroscopy. Nucl. Phys., A 403 234–262 (1983)CrossRefGoogle Scholar
  6. 6.
    Hurst, G.S., Nayfeh, M.H., Young, J.P.: One-atom detection using resonance ionization spectroscopy. Phys. Rev., A 15, 2283 (1977)CrossRefADSGoogle Scholar
  7. 7.
    Letokhov, V.S.: Laser selective detection of ultralow concentrations of atoms. Comments At. Mol. Phys. 7, 93–116 (1977)Google Scholar
  8. 8.
    Borchers, W., et al.: Xenon isotopes far from stability studied by collisional ionization laser spectroscopy. Phys. Lett., B 216, 7–10 (1989)CrossRefADSGoogle Scholar
  9. 9.
    Geithner, W., et al.: Masses and charge radii of Ne17-22 and the two-proton-halo candidate Ne-17. Phys. Rev. Lett. 101, 252502 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Silverans, R.E., et al.: Nuclear charge radii of 78 − 100Sr by non optical detection in fast-beam laser spectroscopy. Phys. Rev. Lett. 60, 2607–2610 (1988)CrossRefADSGoogle Scholar
  11. 11.
    Schulz, C., et al.: Resonance ionization spectroscopy on a fast atomic ytterbium beam. J. Phys., B 24, 4831–4844 (1991)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Mane, E., et al.: An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE. Eur. Phys. J., A 42, 503–507 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Nieminen, A., et al.: On-line ion cooling and bunching for collinear laser spectroscopy. Phys. Rev. Lett. 88, 094801 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Vingerhoets, P., et al.: Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46 (2010, submitted)Google Scholar
  15. 15.
    Cheal, B., et al.: Nuclear spins and moments of Ga isotopes reveal sudden structural changes between N = 40 and N = 50. Phys. Rev. Lett. 104, 252502 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Flanagan, K.T., et al.: Nuclear spins and magnetic moments of 71Cu, 73Cu, 75Cu: inversion of π2p 3/2 and π1f 5/2 levels in 75Cu. Phys. Rev. Lett. 103, 142501 (2009)CrossRefADSGoogle Scholar
  17. 17.
    Flanagan, K.T., et al.: Experimental determination of a I π = 2− ground state in 72,74Cu. Phys. Rev., C 82, 041302(R) (2010)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Cheal, B., et al.: Discovery of a long-lived isomeric state in 80Ga. Phys. Rev., C 82, 051302(R) (2010)CrossRefADSGoogle Scholar
  19. 19.
    Neyens, G., et al.: Measurement of the spin and magnetic moment of 31Mg: evidence for a strongly deformed intruder ground state. Phys. Rev. Lett. 94, 022501 (2005)CrossRefADSGoogle Scholar
  20. 20.
    Yordanov, D.T., et al.: Spin and magnetic moment of 33Mg: evidence for a negative-parity intruder ground state. Phys. Rev. Lett. 99, 212501 (2007)CrossRefADSGoogle Scholar
  21. 21.
    Krämer, J., et al.: Nuclear ground-state spin and magnetic moment of 21Mg. Phys. Lett., B 678, 465–469 (2009)CrossRefADSGoogle Scholar
  22. 22.
    Kowalska, M., et al.: Nuclear ground-state spins and magnetic moments of Mg-27, Mg-29, and Mg-31. Phys. Rev., C 77, 034307 (2008)CrossRefADSGoogle Scholar
  23. 23.
    Tanihata, I., et al.: Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676–2679 (1985)CrossRefADSGoogle Scholar
  24. 24.
    Yan, Z.-C., Drake, G.W.F.: Lithium isotope shifts as a measure of nuclear size. Phys. Rev., A 61, 022504 (2000)CrossRefADSGoogle Scholar
  25. 25.
    Puchalski, M., Moro, A.M., Pachucki, K.: Isotope Shift of the \(3 \; ^2S_{1/2} \rightarrow \; 2\; ^2S_{1/2}\) transition in lithium and the nuclear polarizability. Phys. Rev. Lett. 97, 133001 (2006)CrossRefADSGoogle Scholar
  26. 26.
    Yan, Z.-C., Nörtershäuser, W., Drake, G.W.F.: High precision atomic theory for Li and Be + : QED shifts and isotope shifts. Phys. Rev. Lett. 100, 243002 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Nörtershäuser, W., et al.: Isotope shift measurements of stable and short-lived lithium isotopes for nuclear charge radii determination. Phys. Rev., A (2010, submitted)Google Scholar
  28. 28.
    Nörtershäuser, W., et al.: Nuclear charge radius determination of the 7,10Be and the one-neutron halo nucleus 11Be. Phys. Rev. Lett. 102, 062503 (2009)CrossRefGoogle Scholar
  29. 29.
    Zakova, M., et al.: Isotope shift measurements in the 2s 1/2 →2p 3/2 transition of Be +  and extraction of the nuclear charge radii for 7,10,11Be. J. Phys., G 37, 055107 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Nörtershäuser, W., Campbell, P.: LaSpec at FAIR’S low energy beamline: a new perspective for laser spectroscopy of radioactive nuclei. Hyperfine Interact 171, 149–156 (2006)CrossRefGoogle Scholar
  31. 31.
    Rodriguez, D., et al.: MATS and LaSpec: high-precision experiments using ion traps and lasers at FAIR. Eur. Phys. J. Special Topics 183, 1–123 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Ketelaer, J.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Methods, A 594, 162–177 (2008)CrossRefADSGoogle Scholar
  33. 33.
    Cheal, B., et al.: Laser spectroscopy of niobium fission fragments: first use of optical pumping in an ion beam cooler buncher. Phys. Rev. Lett. 102, 222501 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für KernchemieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations