Skip to main content
Log in

The EFG at sp-impurities in Zn and Cd—a new (final?) look

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The electric field gradients (EFG) at the impurities Ni–Kr and Pd–Xe in the hcp metals Zn and Cd were calculated with the density functional code WIEN2k. Supercells with up to 150 atoms were used, resulting in a very good description of the available experimental data. Typical errors are 5–10%, with exceptions for Ag and Sb in Zn and for I in Zn and Cd, where a remeasurement is urged. The previously proposed systematic trend with positive EFG values for the first five impurity elements in every series and negative ones for the last three is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haas, H.: Quadrupole interaction in metals: nuclear methods. Z. Naturforsch. A 41, 78–90 (1986)

    ADS  Google Scholar 

  2. Lindgren, B.: Self-consistent molecular-cluster calculation of the electric field gradient of 5 sp impurities (47Ag–58Xe) in cadmium. Phys. Rev. B 34, 648–653 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Schmidt, P.C., Weiss, A., Cabus, S., Kübler, J.: Self-consistent supercell band-structure calculations for the investigation of the electric field gradient at impurity sites in Cd metal. Z. Naturforsch A 42, 1321–1326 (1987)

    Google Scholar 

  4. Haas, H.: Nuclear quadrupole interaction in metals: experiments, calculations, models. Hyperfine Interact. 120, 493–509 (2000)

    Article  ADS  Google Scholar 

  5. Ogura, M., Akai, H.: The full potential Korringa-Kohn-Rostoker method and its application in electric field gradient calculations. J. Phys. Condens. Matter 17, 5741–5755 (2005)

    Article  ADS  Google Scholar 

  6. Vianden, R.: Electric field gradients in metals. Hyperfine Interact. 35, 1079–1118 (1987) and references therein

    Article  ADS  Google Scholar 

  7. Christiansen, J., Heubes, P., Keitel, R., Klinger, W., Loeffler, W., Sandner, W., Witthuhn, W.: Temperature dependence of the electric field gradient in noncubic metals. Z. Phys B 24, 177–187 (1976)

    Article  ADS  Google Scholar 

  8. Stone, N.J.: Table of nuclear magnetic dipole and electric quadrupole moments. At. Nucl. Data Tables 90, 75–176 (2005)

    Article  ADS  Google Scholar 

  9. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria). ISBN 3-9501031-1-2 (2001)

  10. Perdew, J.P., Burke, S., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  11. Van Walle, E., Vandenplassche, D., Nuytten, C., Wouters, J., Vanneste, L.: Electric field gradient of Ag in Zn. Phys. Rev. B 28, 1109–1112 (1983)

    Article  ADS  Google Scholar 

  12. Herzog, P.: Comparative study of samples implanted at room temperature and below 1 K by NMR/ON and NO. Hyperfine Interact. 22, 151–162 (1985)

    Article  ADS  Google Scholar 

  13. Ooms, H., Claes, J., Namavar, F., Rots, M.: The electric field gradient at iodine impurities in zinc and cadmium. Hyperfine Interact. 11, 1–12 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, H., Correia, J.G. The EFG at sp-impurities in Zn and Cd—a new (final?) look. Hyperfine Interact 197, 11–15 (2010). https://doi.org/10.1007/s10751-010-0212-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0212-5

Keywords

Navigation