Hyperfine Interactions

, Volume 197, Issue 1–3, pp 11–15 | Cite as

The EFG at sp-impurities in Zn and Cd—a new (final?) look



The electric field gradients (EFG) at the impurities Ni–Kr and Pd–Xe in the hcp metals Zn and Cd were calculated with the density functional code WIEN2k. Supercells with up to 150 atoms were used, resulting in a very good description of the available experimental data. Typical errors are 5–10%, with exceptions for Ag and Sb in Zn and for I in Zn and Cd, where a remeasurement is urged. The previously proposed systematic trend with positive EFG values for the first five impurity elements in every series and negative ones for the last three is confirmed.


Electric field gradients Density functional calculations Zn alloys Cd alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haas, H.: Quadrupole interaction in metals: nuclear methods. Z. Naturforsch. A 41, 78–90 (1986)ADSGoogle Scholar
  2. 2.
    Lindgren, B.: Self-consistent molecular-cluster calculation of the electric field gradient of 5 sp impurities (47Ag–58Xe) in cadmium. Phys. Rev. B 34, 648–653 (1986)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Schmidt, P.C., Weiss, A., Cabus, S., Kübler, J.: Self-consistent supercell band-structure calculations for the investigation of the electric field gradient at impurity sites in Cd metal. Z. Naturforsch A 42, 1321–1326 (1987)Google Scholar
  4. 4.
    Haas, H.: Nuclear quadrupole interaction in metals: experiments, calculations, models. Hyperfine Interact. 120, 493–509 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Ogura, M., Akai, H.: The full potential Korringa-Kohn-Rostoker method and its application in electric field gradient calculations. J. Phys. Condens. Matter 17, 5741–5755 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Vianden, R.: Electric field gradients in metals. Hyperfine Interact. 35, 1079–1118 (1987) and references thereinCrossRefADSGoogle Scholar
  7. 7.
    Christiansen, J., Heubes, P., Keitel, R., Klinger, W., Loeffler, W., Sandner, W., Witthuhn, W.: Temperature dependence of the electric field gradient in noncubic metals. Z. Phys B 24, 177–187 (1976)CrossRefADSGoogle Scholar
  8. 8.
    Stone, N.J.: Table of nuclear magnetic dipole and electric quadrupole moments. At. Nucl. Data Tables 90, 75–176 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria). ISBN 3-9501031-1-2 (2001)Google Scholar
  10. 10.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Van Walle, E., Vandenplassche, D., Nuytten, C., Wouters, J., Vanneste, L.: Electric field gradient of Ag in Zn. Phys. Rev. B 28, 1109–1112 (1983)CrossRefADSGoogle Scholar
  12. 12.
    Herzog, P.: Comparative study of samples implanted at room temperature and below 1 K by NMR/ON and NO. Hyperfine Interact. 22, 151–162 (1985)CrossRefADSGoogle Scholar
  13. 13.
    Ooms, H., Claes, J., Namavar, F., Rots, M.: The electric field gradient at iodine impurities in zinc and cadmium. Hyperfine Interact. 11, 1–12 (1981)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Instituto Tecnológico e NuclearSacavémPortugal
  2. 2.CERN/PH-ISGeneve-23Switzerland

Personalised recommendations