Advertisement

Hyperfine Interactions

, Volume 197, Issue 1–3, pp 187–191 | Cite as

An In-defect complex as a possible explanation for high luminous efficacy of InGaN and AlInN based devices

  • P. Kessler
  • K. Lorenz
  • S. M. C. Miranda
  • J. G. Correia
  • K. Johnston
  • R. Vianden
  • the ISOLDE collaboration
Article

Abstract

The role of indium in GaN and AlN films is investigated with the method of the perturbed angular correlation (PAC). Using the PAC probe 111In in addition to indium on substitutional cation sites a large fraction of probes is found in a distinctly different microscopic environment which was attributed to the formation of an indium nitrogen-vacancy (VN) complex. The influence of an electron capture induced after effect is ruled out by additional measurements with the PAC probes 111mCd and 117Cd and using GaN with different dopants. It is shown that the VN is not bound to substitutional Cd impurities suggesting that the In-VN complex formation is a particularity of In in GaN and AlN. Finally, a preliminary model is presented to explain the temperature behavior of the electric field gradient, observed in the In-VN complex measured with 111In.

Keywords

GaN AlN Ternary semiconductors Perturbed angular correlation (PAC) Defect complex Point defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shigefusa, F., et al.: Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors. Nat. Mater. 5, 810–816 (2006)CrossRefGoogle Scholar
  2. 2.
    Siegbahn, K. (ed.): Alpha-, Beta-, and Gamma-ray Spectroscopy. North-Holland Publishing Company, Amsterdam (1965)MATHGoogle Scholar
  3. 3.
    Lorenz, K., Ruske, F., Vianden, R.: Reversible changes in the lattice site structure for In implanted into GaN. Appl. Phys. Lett. 80(24), 4531–4533 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Lorenz, K., Geruschke, T., Alves, E., Vianden, R.: Temperature dependence of the electric field gradient in GaN measured with the PAC-probe 181Hf. Hyp. Int. 177(1–3), 89–95 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Schmitz, J., Penner, J., Lorenz, K., Alves, E., Vianden, R.: Temperature dependent site change of In in AlN and GaN. Phys. Status Solidi A 205, 93–95 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Firestone, R.B., Baglin, M.C., Chu, S.Y.F.: Table of Isotopes. Wiley-Interscience (1999)Google Scholar
  7. 7.
    Butz, T., Saibenea, S., Fraenzkea, T.h., Webera, M.: A “TDPAC-camera”. Nucl. Instrum. Methods A 284, 417 (1989)CrossRefADSGoogle Scholar
  8. 8.
    Marques, J.G., Correia, J.G., Melo, A.A., da Silva, M.F., Soares, J.C., ISOLDE Collaboration (CERN): A four-detector spectrometer for e–γ PAC on-line with the ISOLDE-CERN isotope separator. Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms 99(1–4), 645–648 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P. Kessler
    • 1
  • K. Lorenz
    • 2
  • S. M. C. Miranda
    • 2
  • J. G. Correia
    • 2
  • K. Johnston
    • 3
  • R. Vianden
    • 1
  • the ISOLDE collaboration
    • 4
  1. 1.Helmholtz–Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.Instituto Tecnólogico e NuclearSacavémPortugal
  3. 3.Technische PhysikUniversität des SaarlandesSaarbrückenGermany
  4. 4.ISOLDE CERNGenevaSwitzerland

Personalised recommendations