Skip to main content
Log in

Grating tuned Ti:Sa laser for in-source spectroscopy of Rydberg and autoionizing states

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Due to the large absorption cross section for optical transitions into Rydberg and autoionizing states compared to non-resonant ionization, these states are of particular interest for use in efficient laser resonance ionization excitation schemes as used in Resonant Ionization Laser Ion Sources (RILIS). In order to identify these atomic states extensive laser spectroscopy has to be performed. The lasers employed at TRIUMF’s laser ion source are birefringent filter tuned titanium:sapphire (Ti:Sa) lasers which are designed for long term frequency stability rather than continuous tuning. The design and characteristics of a grating tuned, high repetition rate, pulsed Ti:Sa laser for spectroscopy applications are presented. This laser allows fast scans of up to 40 THz with a laser linewidth of approximately 6 GHz. First tests were performed by scanning across the Rydberg series of gallium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bricault, P., et al.: An overview on TRIUMF’s developments on ion sources for radioactive beams. Rev. Sci. Instrum. 79, 02A908 (2008)

    Article  Google Scholar 

  2. Scheerer, F., et al.: A chemically selective laser ion-source for online mass separation. Rev. Sci. Instrum. 63, 2831–2833 (1992)

    Article  ADS  Google Scholar 

  3. Alkhazov, G.D., et al.: A new highly efficient selective laser ion source. Nucl. Instrum. Methods A 280, 141–143 (1989)

    Article  ADS  Google Scholar 

  4. Kluge, H.-J., et al.: Laser ion sources. In: Proceedings on Accelerated Radioactive Beams Workshop, Vancouver Island, TRIUMF Proceedings TRI-85-1:119 (1985)

  5. Köster, U.: Resonance ionization laser ion sources. Nucl. Phys., A 701, 441c–451c (2002)

    Article  ADS  Google Scholar 

  6. Lassen, J., et al.: Resonant ionization laser ion source project at TRIUMF. Hyperfine Interact. 162, 69–75 (2005)

    Article  ADS  Google Scholar 

  7. Demtröder, W.: Laser Spectroscopy. In: Basic Principles, vol. 1, pp. 335–341. Springer-Verlag Berlin Heidelberg (2008)

    Google Scholar 

  8. Duarte, F.J.: Solid-state multiple-prism grating dye-laser oscillators. Appl. Opt. 33, 3857–3860 (1994)

    Article  ADS  Google Scholar 

  9. Duarte, F.J., et al.: Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator. Appl. Opt. 37, 3987–3989 (1998)

    Article  ADS  Google Scholar 

  10. Horn, R.E.: Aufbau eines Systems gepulster, abstimmbarer Festkörperlaser zum Einsatz in der Resonanzionisations-Massenspektroskopie. Dissertation, Johannes Gutenberg-Universität Mainz (2003) (in German)

  11. Albers, D.: Design, Assembly and characterisation of a double-sided-pumped, high repetition rate titanium sapphire laser systems. Diplom thesis, Fachhochschule Oldenburg/ Ostfriesland/ Wilhelmshaven (2007)

  12. Hänsch, T.W.: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11, 895–989 (1972)

    Article  ADS  Google Scholar 

  13. Boyd, R.D., et al.: High-efficiency metallic diffraction gratings for laser applications. Appl. Opt. 34, 1697–1706 (1995)

    Article  ADS  Google Scholar 

  14. Hanna, D.C., et al.: A simple beam expander for frequency narrowing of dye lasers. Opt. Quantum Electron. 7, 115–119 (1975)

    Article  ADS  Google Scholar 

  15. Prime, E.J., et al.: TRIUMF resonant ionization laser ion source—Ga, Al and Be radioactive ion beam development. Hyperfine Interact. 171, 127–134 (2006)

    Article  ADS  Google Scholar 

  16. Ball, G.C., et al.: High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC. J. Phys., G 31, 1491–1498 (2005)

    Article  Google Scholar 

  17. Geppert, C.: Resonanzionisation zum Nachweis und zur Erzeugung radioaktiver Ionenstrahlen: Vom hochselectiven Ultraspurennachweis zur selektiven on-line Laserionenquelle, Dissertation, Johannes Gutenberg-Universität Mainz (2005) (in German)

  18. Lavoie, J.P., et al.: Segmented linear radiofrequency quadrupole/laser ion source project at TRIUMF. Hyperfine Interact. 174, 33–39 (2007)

    Article  ADS  Google Scholar 

  19. Sansonetti, J.E., et al.: Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34, 1559–2259 (2005)

    Article  ADS  Google Scholar 

  20. Zherikhin, A.N., et al.: Production of photoionic gallium beams through stepwise ionization of atoms by laser radiation. Appl. Phys., B 30, 47–52 (1983)

    Article  ADS  Google Scholar 

  21. Buurman, E.P., et al.: On the intercombination line 4s 24p2p − 4s4p 24p in the spectrum of neutral gallium. Z. Phys., D 8, 7–10 (1988)

    Article  ADS  Google Scholar 

  22. Saloman, E.B.: A resonance ionization spectroscopy/resonance ionization mass spectrometery data service. V-Data Sheets for Ga, Mn, Sc, and Tl, Spectrochim. Acta. Part B 49, 251–281 (1994)

    Article  Google Scholar 

  23. Baig, M.A., et al.: Autoionization resonances in the 4s-subshell excitation spectrum of gallium. J. Phys., B 24, 3933–3942 (1991)

    Article  ADS  Google Scholar 

  24. Davidson, M.D., et al.: Measurements on the quantum defect of the 2S Rydberg series and fine structure of the 2D Rydberg series in the Gallium I spectrum. Z. Phys., D 15, 293–296 (1990)

    Article  ADS  Google Scholar 

  25. Shirai, T., et al.: Spectral data for gallium: Ga I through Ga XXXI. J. Phys. Chem. Ref. Data 36, 509–615 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teigelhöfer, A., Bricault, P., Chachkova, O. et al. Grating tuned Ti:Sa laser for in-source spectroscopy of Rydberg and autoionizing states. Hyperfine Interact 196, 161–168 (2010). https://doi.org/10.1007/s10751-010-0171-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0171-x

Keywords

Navigation