Advertisement

Hyperfine Interactions

, Volume 191, Issue 1–3, pp 95–102 | Cite as

Origin of ferromagnetism in iron implanted rutile single crystals

  • G. Talut
  • H. Reuther
  • J. Grenzer
  • S. Zhou
Article

Abstract

57Fe doped titanium oxide monocrystals, prepared by ion implantation at different temperatures and subsequent thermal treatment, were characterized by conversion electron Mössbauer spectrometry, synchrotron radiation x-ray diffraction and superconducting quantum interference device magnetometry. After implantation at room temperature Fe is present in divalent state. Upon annealing in high vacuum Fe2 +  is reduced to metallic Fe for the most part. After implantation at 623 K most iron is in metallic state. During annealing on air Fe is gradually oxidized from Fe2 +  to Fe3 + . Depending on preparation conditions and thermal treatment the role of different nanosized secondary phases is discussed in terms of their influence on the magnetic properties of Fe:TiO2. α-Fe nanoparticles are found to be responsible for ferromagnetism observed in TiO2.

Keywords

Conversion Electron Mössbauer Spectroscopy (CEMS) Diluted magnetic semiconductor (DMS) Fe doping of Ti oxide Ion beam implantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matsumoto, Y., et al.: Science 291, 854–855 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Wolf, S.A., et al.: Science 294, 1488–1495 (2001)CrossRefADSGoogle Scholar
  3. 3.
    Kim, K.J., et al.: J. Appl. Phys. 99, 08M120-1 (2006)Google Scholar
  4. 4.
    Hong, N.H., et al.: Phys. Rev. B 70, 195204-1 (2004)Google Scholar
  5. 5.
    Sangaletti, L., et al.: J. Phys.: Condens. Matter 18, 7643–7650 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Shutthanandan, V., et al.: Appl. Phys. Lett. 84, 4466–4468 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Xu, J.P., et al.: Solid State Commun. 140, 514–518 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Osterwalder, J., et al.: Thin Solid Films 484, 289–298 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Zhang, X., et al.: J. Phys. D: Appl. Phys. 41, 1–5 (2008)Google Scholar
  10. 10.
    Xin, Y., et al.: Appl. Phys. Lett. 88, 112512-1 (2006)Google Scholar
  11. 11.
    Kim, Y.J., et al.: Appl. Phys. Lett. 84, 3531–3533 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Nomura, K., et al.: Thin Solid Films 515, 86498652 (2007)Google Scholar
  13. 13.
    Nomura, K., et al.: Hyperfine Interact. 168, 1065–1071 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Dietl, T.: J. Appl. Phys. 103, 07D111-4 (2008)Google Scholar
  15. 15.
    Rodríguez Torres, C.E., et al.: Physica B 354, 67–70 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Zhu, S., et al.: Physica B 364, 199–205 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Rodríguez Torres, C.E., et al.: J. Phys., Condens. Matter 20, 135210 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Balcells, Ll., et al.: Appl. Phys. Lett. 89, 122501-1 (2006)Google Scholar
  19. 19.
    Hong, N.H., et al.: Phys. Rev., B 73, 132404-1 (2006)Google Scholar
  20. 20.
    Potzger, K., et al.: Appl. Phys. Lett. 92, 182504 (2008)CrossRefADSGoogle Scholar
  21. 21.
    Zhou, S., et al.: J. Appl. Phys. 103, 07D530 (2008)Google Scholar
  22. 22.
    Brand, R.A.: Nucl. Instrum. Methods B 28, 398 (1987)CrossRefADSGoogle Scholar
  23. 23.
    Long, G.J.: Mössbauer Spectroscopy Applied to Inorganic Chemistry, p. 507. Plenum, Pittsburg (1987)Google Scholar
  24. 24.
    Shirane, G., et al.: Phys. Rev. 125, 1158 (1962)CrossRefADSGoogle Scholar
  25. 25.
    Guermazi, M., et al.: Mat. Res. Bull. 18, 529–538 (1983)CrossRefGoogle Scholar
  26. 26.
    Zhou, S., et al.: J. Appl. Phys. 103, 083907 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Forschungszentrum Dresden-RossendorfDresdenGermany

Personalised recommendations