Hyperfine Interactions

, Volume 192, Issue 1–3, pp 51–59 | Cite as

Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere

  • Juan A. Jaén
  • Alcides Muñóz
  • Jaime Justavino
  • Cecilio Hernández


The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Mössbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite α-FeOOH and lepidocrocite γ-FeOOH are early corrosion products. Maghemite γ-Fe2O3 and magnetite Fe3O4 have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite β-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite α-Fe2O3 in one sample.


Atmospheric corrosion Weathering steel Carbon steel Tropical atmosphere Corrosion product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leidheiser, H., Jr., Músic, S.: The atmospheric corrosion of iron as studied by Mössbauer spectroscopy. Corr. Sci. 22, 1089–1096 (1982)CrossRefGoogle Scholar
  2. 2.
    Rincón, A., de Rincón, O.T., Haces, C., Furet, N.R., Corvo, F.: Evaluation of steel corrosion products in tropical climates. Corrosion 53(11), 835–841 (1997)CrossRefGoogle Scholar
  3. 3.
    Yamashita, M., Uchida, H.: Recent research and development in solving atmospheric corrosion problems of steel industries in Japan. Hyperfine Interact. 139/140, 153–166 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhang, Q.C., Wu, J.S., Wang, J.J., Zheng, W.L., Chen, J.B., Li, A.B.: Corrosion behavior of weathering steel in marine atmosphere. Mater. Chem. Phys. 77, 603–608 (2002)Google Scholar
  5. 5.
    Cook, D.: Application of Mössbauer spectroscopy to the study of corrosion. Hyperfine Interact. 153, 61–82 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Cook, D.: Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments. Corr. Sci. 47, 2550–2570 (2005)CrossRefGoogle Scholar
  7. 7.
    Kamimura, T., Hara, S., Miyuki, H., Yamashita, M., Uchida, H.: Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corr. Sci. 48, 2799–2812 (2006)CrossRefGoogle Scholar
  8. 8.
    Han, W., Yu, G., Wang, Z., Wang, J.: Characterization of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation. Corr. Sci. 49, 2920–2935 (2007)CrossRefGoogle Scholar
  9. 9.
    Southwell, C.R., Forgeson, B.W., Alexander, A.L.: NRL Report 5002, Corrosion of Metals in Tropical Environments. Part-2 Atmospheric Corrosion of Ten Structural Steels. Naval Research Laboratory, Washington D.C. (1957)Google Scholar
  10. 10.
    Jaén, J.A., Fernández, B.: Mössbauer spectroscopy study of steel corrosion in a tropical marine atmosphere. Electrochem. Acta 34, 885–886 (1989)CrossRefGoogle Scholar
  11. 11.
    Jaén, J.A., Sánchez de Villalaz, M., de Araque, L., de Bósquez, A.: Kinetics and structural studies of the atmospheric corrosion of carbon steels in Panama. Hyperfine Interact. 110, 93–99 (1997)CrossRefADSGoogle Scholar
  12. 12.
    Jaén, J.A., Sánchez de Villalaz, M. de, Araque, L. de, Hernández, C. y Bósquez, A. de: Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama. Rev. Metal. Madrid Vol. Extr., 32–37 (2003)Google Scholar
  13. 13.
    ISO 9223: Corrosion of Metals and Alloys. Classification of Corrosivity of Atmospheres. International Standards Organization, Geneve (1991)Google Scholar
  14. 14.
    ISO 9226: Corrosion of Metals and Alloys. Method for Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. International Standards Organization, Geneve (1991)Google Scholar
  15. 15.
    Raman, A., Kuban, B., Razvan, A.: The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products. Corr. Sci. 32(12), 1295–1306 (1991)CrossRefGoogle Scholar
  16. 16.
    Oh, S.J., Cook, D.C., Towsend, H.E.: Atmospheric corrosion of different steels in marine, rural and industrial environments. Corr. Sci. 41, 1687, (1999)CrossRefGoogle Scholar
  17. 17.
    Singh, A.K., Ericsson, T., Häggström, L., Gullman, J.: Mössbauer and X-ray diffraction phase analysis of rusts from atmospheric test sites with different environments in Sweden. Corr. Sci. 25(10), 931–945 (1985)CrossRefGoogle Scholar
  18. 18.
    Santana Rodríguez, J.J., Santana Hernández, F.J., González González, J.E.: XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corr. Sci. 44(11), 2425–2438 (2002)CrossRefGoogle Scholar
  19. 19.
    Cook, D.C., Van Orden, A.C., Carpio, J.J., Oh, S.J.: Atmospheric corrosion in the Gulf of México. Hyperfine Interact. 113, 319–329 (1998)CrossRefADSGoogle Scholar
  20. 20.
    Ishikawa, T., Kondo, Y., Yasukawa, A., Kandori, K.: Formation of magnetite in the presence of ferric oxyhydroxides. Corr. Sci. 40(7), 1239–1251 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Juan A. Jaén
    • 1
  • Alcides Muñóz
    • 2
  • Jaime Justavino
    • 3
  • Cecilio Hernández
    • 3
  1. 1.Depto. de Química Física, CITEN, Lab. N° 105, Edificio de Laboratorios Científicos—VIPUniversidad de PanamáPanama CityPanama
  2. 2.Depto. de Física, Lab. N° 216, Edificio de Laboratorios Científicos—VIPUniversidad de PanamáPanama CityPanama
  3. 3.Laboratorio de Química y Física AplicadaUniversidad Tecnológica de PanamáPanama CityPanama

Personalised recommendations