Hyperfine Interactions

, 193:283 | Cite as

Quantum Gravity, CPT symmetry and entangled states

  • Nick E. Mavromatos


There may be unique (“smoking-gun”) signatures of the breakdown of CPT symmetry, induced in some models of Quantum Gravity entailing decoherence for quantum matter. Such effects can be observed in entangled states of neutral mesons via modifications of the respective Einstein-Podolsky-Rosen (EPR) correlators (“ω-effect”). In the talk I discuss experimental signatures and bounds of the ω-effect in Φ- and B-factories, and argue that the effect might be falsifiable at the next generation facilities.


Quantum Gravity Decoherence Entanglement Neutral mesons 


04.60.-m 03.65.Ud 03.65.Yz 14.40.Aq 


  1. 1.
    Amelino-Camelia, G.: Quantum gravity phenomenology. arXiv:0806.0339 [gr-qc] (For reviews)
  2. 2.
    Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005) (For reviews)Google Scholar
  3. 3.
    Mavromatos, N.E.: CPT violation and decoherence in quantum gravity. Lect. Notes Phys. 669, 245 (2005) (For reviews)CrossRefADSGoogle Scholar
  4. 4.
    Polchinski, J.: String Theory, vols. 1 & 2. Cambridge University Press (1998)Google Scholar
  5. 5.
    Wheeler, J.A., Ford, K.: Geons, Black Holes, and Quantum Foam: A Life in Physics. Norton, NY, USA (1998)MATHGoogle Scholar
  6. 6.
    Lehnert, R.: These proceedings. (See also: Kostelecky, V.A.: CPT and Lorentz symmetry. In: Proceedings: 4th Meeting, Bloomington, USA, 8–11 Aug 2007)Google Scholar
  7. 7.
    Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C.D., Okamoto, T.: Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87, 141601 (2001)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Greenberg, O.W.: Why is CPT fundamental? Found. Phys. 36, 1535 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Wald, R.M.: Quantum gravity and time reversibility. Phys. Rev., D 21, 2742 (1980)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Bernabeu, J., Mavromatos, N.E., Sarkar, S.: Decoherence induced CPT violation and entangled neutral mesons. Phys. Rev., D 74, 045014 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Milburn, G.J.: Lorentz invariant intrinsic decoherence. New J. Phys. 8, 96 (2006)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Bernabeu, J., Mavromatos, N.E., Papavassiliou, J.: Novel type of CPT violation for correlated EPR states. Phys. Rev. Lett. 92, 131601 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Bernabeu, J., Mavromatos, N.E., Papavassiliou, J., Waldron-Lauda, A.: Intrinsic CPT violation and decoherence for entangled neutral mesons. Nucl. Phys., B 744, 180 (2006)MATHCrossRefADSGoogle Scholar
  14. 14.
    Testa, M. [KLOE Collaboration]: Recent results from KLOE. arXiv:0805.1969 [hep-ex]
  15. 15.
    Ambrosino, F., et al. [KLOE Collaboration]: First observation of quantum interference in the process Phi → K(S) K(L) → pi+ pi− pi+ pi−: a test of quantum mechanics and CPT symmetry. Phys. Lett., B 642, 315 (2006)Google Scholar
  16. 16.
    Ellis, J.R., Hagelin, J.S., Nanopoulos, D.V., Srednicki, M.: Search for violations of quantum mechanics. Nucl. Phys., B 241, 381 (1984)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Ellis, J.R., Lopez, J.L., Mavromatos, N.E., Nanopoulos, D.V.: Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system. Phys. Rev., D 53, 3846 (1996)CrossRefADSGoogle Scholar
  18. 18.
    Huet, P., Peskin, M.E.: Violation of CPT and quantum mechanics in the K0–anti-K0 system. Nucl. Phys., B 434, 3 (1995)CrossRefADSGoogle Scholar
  19. 19.
    Benatti, F., Floreanini, R.: Completely positive dynamical maps and the neutral kaon system. Nucl. Phys., B 488, 335 (1997) (For entalged states, the requirement of complete positivity implies a different parametrization for the foam effects (in some cases one may consider α = γ, β = 0 in the parameterization of Ellis et al.) The experiment can independently measure all three decoherence parameters α,β, γ of Ellis et al. and hence test the assumption of complete positivity, which notably may not be a property of quantum gravity.)Google Scholar
  20. 20.
    Alvarez, E., Bernabeu, J., Mavromatos, N.E., Nebot, M., Papavassiliou, J.: CPT violation in entangled B0–anti-B0 states and the demise of flavour tagging. Phys. Lett., B 607, 197 (2005)CrossRefADSGoogle Scholar
  21. 21.
    Alvarez, E., Bernabeu, J., Nebot, M.: Delta(t)-dependent equal-sign dilepton asymmetry and CPTV effects in the symmetry of the B0 anti-B0 entangled state. J. High Energy Phys. 0611, 087 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhysicsKing’s College LondonLondonUK

Personalised recommendations