Skip to main content
Log in

Quantum Gravity, CPT symmetry and entangled states

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

There may be unique (“smoking-gun”) signatures of the breakdown of CPT symmetry, induced in some models of Quantum Gravity entailing decoherence for quantum matter. Such effects can be observed in entangled states of neutral mesons via modifications of the respective Einstein-Podolsky-Rosen (EPR) correlators (“ω-effect”). In the talk I discuss experimental signatures and bounds of the ω-effect in Φ- and B-factories, and argue that the effect might be falsifiable at the next generation facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelino-Camelia, G.: Quantum gravity phenomenology. arXiv:0806.0339 [gr-qc] (For reviews)

  2. Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005) (For reviews)

    Google Scholar 

  3. Mavromatos, N.E.: CPT violation and decoherence in quantum gravity. Lect. Notes Phys. 669, 245 (2005) (For reviews)

    Article  ADS  Google Scholar 

  4. Polchinski, J.: String Theory, vols. 1 & 2. Cambridge University Press (1998)

  5. Wheeler, J.A., Ford, K.: Geons, Black Holes, and Quantum Foam: A Life in Physics. Norton, NY, USA (1998)

    MATH  Google Scholar 

  6. Lehnert, R.: These proceedings. (See also: Kostelecky, V.A.: CPT and Lorentz symmetry. In: Proceedings: 4th Meeting, Bloomington, USA, 8–11 Aug 2007)

  7. Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C.D., Okamoto, T.: Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87, 141601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  8. Greenberg, O.W.: Why is CPT fundamental? Found. Phys. 36, 1535 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Wald, R.M.: Quantum gravity and time reversibility. Phys. Rev., D 21, 2742 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bernabeu, J., Mavromatos, N.E., Sarkar, S.: Decoherence induced CPT violation and entangled neutral mesons. Phys. Rev., D 74, 045014 (2006)

    Article  ADS  Google Scholar 

  11. Milburn, G.J.: Lorentz invariant intrinsic decoherence. New J. Phys. 8, 96 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bernabeu, J., Mavromatos, N.E., Papavassiliou, J.: Novel type of CPT violation for correlated EPR states. Phys. Rev. Lett. 92, 131601 (2004)

    Article  ADS  Google Scholar 

  13. Bernabeu, J., Mavromatos, N.E., Papavassiliou, J., Waldron-Lauda, A.: Intrinsic CPT violation and decoherence for entangled neutral mesons. Nucl. Phys., B 744, 180 (2006)

    Article  MATH  ADS  Google Scholar 

  14. Testa, M. [KLOE Collaboration]: Recent results from KLOE. arXiv:0805.1969 [hep-ex]

  15. Ambrosino, F., et al. [KLOE Collaboration]: First observation of quantum interference in the process Phi → K(S) K(L) → pi+ pi− pi+ pi−: a test of quantum mechanics and CPT symmetry. Phys. Lett., B 642, 315 (2006)

    Google Scholar 

  16. Ellis, J.R., Hagelin, J.S., Nanopoulos, D.V., Srednicki, M.: Search for violations of quantum mechanics. Nucl. Phys., B 241, 381 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ellis, J.R., Lopez, J.L., Mavromatos, N.E., Nanopoulos, D.V.: Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system. Phys. Rev., D 53, 3846 (1996)

    Article  ADS  Google Scholar 

  18. Huet, P., Peskin, M.E.: Violation of CPT and quantum mechanics in the K0–anti-K0 system. Nucl. Phys., B 434, 3 (1995)

    Article  ADS  Google Scholar 

  19. Benatti, F., Floreanini, R.: Completely positive dynamical maps and the neutral kaon system. Nucl. Phys., B 488, 335 (1997) (For entalged states, the requirement of complete positivity implies a different parametrization for the foam effects (in some cases one may consider α = γ, β = 0 in the parameterization of Ellis et al.) The experiment can independently measure all three decoherence parameters α,β, γ of Ellis et al. and hence test the assumption of complete positivity, which notably may not be a property of quantum gravity.)

  20. Alvarez, E., Bernabeu, J., Mavromatos, N.E., Nebot, M., Papavassiliou, J.: CPT violation in entangled B0–anti-B0 states and the demise of flavour tagging. Phys. Lett., B 607, 197 (2005)

    Article  ADS  Google Scholar 

  21. Alvarez, E., Bernabeu, J., Nebot, M.: Delta(t)-dependent equal-sign dilepton asymmetry and CPTV effects in the symmetry of the B0 anti-B0 entangled state. J. High Energy Phys. 0611, 087 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick E. Mavromatos.

Additional information

Work supported in part by the European Union through the FP6 Marie Curie Research and Training Network UniverseNet (MRTN-CT-2006-035863).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavromatos, N.E. Quantum Gravity, CPT symmetry and entangled states. Hyperfine Interact 193, 283–289 (2009). https://doi.org/10.1007/s10751-009-0013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-009-0013-x

Keywords

PACS

Navigation