Advertisement

Hyperfine Interactions

, Volume 192, Issue 1–3, pp 101–107 | Cite as

Rhyolite–dacite–trachyandesite association: a Mössbauer spectroscopy study

  • K. M. Hassan
Article

Abstract

Three volcanic dykes, rhyolite, dacite and trachyandesite cutting a radioactive granite, located between Latitudes 22° 47′ 396″–22° 47′ 884″ N and Longitudes 31° 54′ 883″–31° 54′ 894″ E in the south Western Desert of Egypt were sampled and analyzed by X-ray diffraction, 57Fe Mössbauer spectroscopy and chemical method. They are consisted of feldspar and quartz together with some paramagnetic minerals including aegirine plus minor riebeckite in the rhyolite; aegirine plus some riebeckite in the dacite; and riebeckite plus trace aegirine in the trachyandesite, respectively. The bulk content of iron in each dyke has characteristic ferric-quadrupole splitting and oxidation values: 0.29 millimeters per second (mm/s) and 100% for rhyolite; 0.31 mm/s and 82% for dacite; and 0.35 mm/s and 0.69% for trachyandesite. Variations in the quadrupole splitting have been attributed to changes from the local crystal chemistry, while the oxidation variations are source-related.

Keywords

Volcanic dykes Aegirine Riebeckite Mössbauer Egypt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hassan, K.M.: Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert, Egypt. Ann. Geol. Surv. Egypt XXVIII, 195 (2005)Google Scholar
  2. 2.
    Bahgat, A.A., Hassan, K.M.: Mixed valent iron in biotite. Hyp. Interact. 41, 755 (1988)CrossRefADSGoogle Scholar
  3. 3.
    Bahgat, A.A., Abu El-Lell, I., Radan, T.M.: Gabbro-metgabbro association: a Mössbauer effect study. Hyp. Interact. 70, 949 (1992)CrossRefADSGoogle Scholar
  4. 4.
    Eissa, N.A., Abou Sehly, A.A., Shash, N., Salman, F., El Bahnassawy, H.H.: Mössbauer spectra electrical and thermal conductivities of Egyptian granite. Arab J. Nucl. Sci. Appl. 27–2, 109 (1994)Google Scholar
  5. 5.
    Eissa, N.A., Sallam, H.A., Sheta, N.H., El Bahnassawy, H.H.: Mössbauer effect study of biotite from Egyptian granite rocks. Arab J. Nucl. Sci. Appl. 27–2, 97 (1994)Google Scholar
  6. 6.
    Eissa, N.A., Sallam, H.A., El Bahnassawy, H.H.: Mössbauer study of Egyptian granite. Arab J. Nucl. Sci. Appl. 27–2, 87 (1994)Google Scholar
  7. 7.
    Shapiro, L., Brannock, W.W.: Rapid analysis of silicate, carbonate, and phosphate rocks. U.S. Geol. Surv. Bull. 1144 A, 5 (1975)Google Scholar
  8. 8.
    De Grave, E., Van Alboom, A., Eeckhout, S.G.: Electronic and magnetic properties of a natural aegirine as observed from its Mössbauer spectra. Phys. Chem. Miner. 25, 378 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Dollase, W.A., Gustafson, W.I.: 57Fe Mössbauer spectral analysis of the sodic clinopyroxenes. Am. Mineral. 67, 311 (1982)Google Scholar
  10. 10.
    Bancroft, G.M., Maddock, A.G., Burns, R.G.: Applications of Mössbauer effect to silicate mineralogy-I. Iron silicates of known crystal structure. Geochim. Cosmochim. Acta. 31, 2219 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Radioactive Sedimentary DepositsNuclear Materials AuthorityCairoEgypt

Personalised recommendations