Skip to main content
Log in

Rhyolite–dacite–trachyandesite association: a Mössbauer spectroscopy study

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Three volcanic dykes, rhyolite, dacite and trachyandesite cutting a radioactive granite, located between Latitudes 22° 47′ 396″–22° 47′ 884″ N and Longitudes 31° 54′ 883″–31° 54′ 894″ E in the south Western Desert of Egypt were sampled and analyzed by X-ray diffraction, 57Fe Mössbauer spectroscopy and chemical method. They are consisted of feldspar and quartz together with some paramagnetic minerals including aegirine plus minor riebeckite in the rhyolite; aegirine plus some riebeckite in the dacite; and riebeckite plus trace aegirine in the trachyandesite, respectively. The bulk content of iron in each dyke has characteristic ferric-quadrupole splitting and oxidation values: 0.29 millimeters per second (mm/s) and 100% for rhyolite; 0.31 mm/s and 82% for dacite; and 0.35 mm/s and 0.69% for trachyandesite. Variations in the quadrupole splitting have been attributed to changes from the local crystal chemistry, while the oxidation variations are source-related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassan, K.M.: Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert, Egypt. Ann. Geol. Surv. Egypt XXVIII, 195 (2005)

    Google Scholar 

  2. Bahgat, A.A., Hassan, K.M.: Mixed valent iron in biotite. Hyp. Interact. 41, 755 (1988)

    Article  ADS  Google Scholar 

  3. Bahgat, A.A., Abu El-Lell, I., Radan, T.M.: Gabbro-metgabbro association: a Mössbauer effect study. Hyp. Interact. 70, 949 (1992)

    Article  ADS  Google Scholar 

  4. Eissa, N.A., Abou Sehly, A.A., Shash, N., Salman, F., El Bahnassawy, H.H.: Mössbauer spectra electrical and thermal conductivities of Egyptian granite. Arab J. Nucl. Sci. Appl. 27–2, 109 (1994)

    Google Scholar 

  5. Eissa, N.A., Sallam, H.A., Sheta, N.H., El Bahnassawy, H.H.: Mössbauer effect study of biotite from Egyptian granite rocks. Arab J. Nucl. Sci. Appl. 27–2, 97 (1994)

    Google Scholar 

  6. Eissa, N.A., Sallam, H.A., El Bahnassawy, H.H.: Mössbauer study of Egyptian granite. Arab J. Nucl. Sci. Appl. 27–2, 87 (1994)

    Google Scholar 

  7. Shapiro, L., Brannock, W.W.: Rapid analysis of silicate, carbonate, and phosphate rocks. U.S. Geol. Surv. Bull. 1144 A, 5 (1975)

    Google Scholar 

  8. De Grave, E., Van Alboom, A., Eeckhout, S.G.: Electronic and magnetic properties of a natural aegirine as observed from its Mössbauer spectra. Phys. Chem. Miner. 25, 378 (1998)

    Article  ADS  Google Scholar 

  9. Dollase, W.A., Gustafson, W.I.: 57Fe Mössbauer spectral analysis of the sodic clinopyroxenes. Am. Mineral. 67, 311 (1982)

    Google Scholar 

  10. Bancroft, G.M., Maddock, A.G., Burns, R.G.: Applications of Mössbauer effect to silicate mineralogy-I. Iron silicates of known crystal structure. Geochim. Cosmochim. Acta. 31, 2219 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, K.M. Rhyolite–dacite–trachyandesite association: a Mössbauer spectroscopy study. Hyperfine Interact 192, 101–107 (2009). https://doi.org/10.1007/s10751-008-9904-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-008-9904-5

Keywords

Navigation