Hyperfine Interactions

, Volume 184, Issue 1–3, pp 235–243 | Cite as

Mössbauer and magnetic studies on nanocrystalline NiFe2O4 particles prepared by ethylene glycol route

  • S. S. Umare
  • R. S. Ningthoujam
  • S. J. Sharma
  • S. Shrivastava
  • Sajith Kurian
  • N. S. Gajbhiye


NiFe2O4 nanoparticles have been synthesized by co-precipitation method at 145°C in N2 atmosphere using ethylene glycol as solvent and capping agent. This gives the promising synthesis route for nanoparticles at low temperature. The as-synthesized NiFe2O4 is subsequently heated at 400°C, 500°C, 700°C and 800°C. Crystallite size increases with the heat treatment temperature. The heat treatment temperature has direct effect on the electron paramagnetic resonance and intrinsic magnetic properties. The room temperature Mössbauer spectrum of the 800°C heated sample shows the two sextets pattern indicating that the sample is ferrimagnetic and Fe3 +  ions occupy both tetrahedral and octahedral sites of spinel structure.


Ferrites Fine particles Mössbauer spectroscopy Magnetic material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gajbhiye, N.S., Bhattacharyya, S., Balaji, G., Ningthoujam, R.S., Das, R.K., Basak, S., Weissmüller, J.: Mössbauer and magnetic studies of MFe2O4 (M = Co, Ni) nanoparticles. Hyperfine Interact. 165, 153–159 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Gajbhiye, N.S., Ningthoujam, R.S., Weissmuller, J.: Mössbauer study of nanocrystalline ε-Fe3−xCoxN system. Hyperfine Interact. 156, 51–56 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Cao, X., Gu, L.: Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties. Nanotechnology 16, 180–185 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Lee, J.-G., Lee, H.M., Kim, C.S., Young-Jei, O.: Magnetic properties of CoFe2O4 powders and thin films grown by a sol-gel method. J. Magn. Magn. Mater. 177, 900 (1998)CrossRefADSGoogle Scholar
  5. 5.
    Davies, K.J., Wells, S., Upadhyay, R.V., Charles, S.W., O’Grady, K., Hilo, M.E., Meaz, T., Mørup, S.: The observation of multi-axial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids. J. Magn. Magn. Mater. 149, 14–18 (1995)CrossRefADSGoogle Scholar
  6. 6.
    Ding, J., Miao, W.M., McCormick, P.G., Street, R.: Mechanochemical synthesis of ultrafine Fe powder. Appl. Phys. Lett. 67, 3804–3806 (1995)CrossRefADSGoogle Scholar
  7. 7.
    Goya, G.F., Rechenberg, H.R., Jiang, J.Z.: Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101–1108 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kaufman, M., Kiminami, R.H.G.A.: Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders. J. Mater. Sci. 37, 3569–3572 (2002)CrossRefGoogle Scholar
  9. 9.
    Prasad, S.: Solid state reactivity, characterization and anomalous magnetic behaviour of nanocrystalline spinel ferrite particles synthesized by citrate precursor technique. Dissertation, Indian Institute of Technology, Kanpur, India (1997)Google Scholar
  10. 10.
    Ningthoujam, R.S., Sudarsan, V., Kulshreshtha, S.K.: SnO2:Eu nanoparticles dispersed in silica: a low temperature synthesis and photoluminescence study. J. Lumin. 127, 747–756 (2007)CrossRefGoogle Scholar
  11. 11.
    Ningthoujam, R.S., Sudarsan, V., Godbole, S.V., Kienle, L., Kulshreshtha, S.K., Tyagi, A.K.: SnO2:Eu3 +  nanoparticles dispersed in TiO2 matrix: improved energy transfer between semiconductor host and Eu3 +  ions for the low temperature synthesized samples. Appl. Phys. Lett. 90, 173113–3 (2007)CrossRefGoogle Scholar
  12. 12.
    Ningthoujam, R.S., Gajbhiye, N.S., Ahmed, A., Umre, S.S., Sharma, S.J.: Re-dispersible Li +  and Eu3 +  co-doped ZnO nano-dumb-bell: luminescence and EPR studies. J. Nanosci. Nanotechnol. 8, 3059–30662 (2008)CrossRefGoogle Scholar
  13. 13.
    Gajbhiye, N.S., Ningthoujam, R.S., Ahmed, A., Panda, D.K., Umre, S.S., Sharma, S.J.: Re-dispersible Li +  and Eu3 +  co-doped CdS nanowires: luminescence studies. Pramana 70, 313–321 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Pascal, C., Pascal, J.L., Farier, F., Moubtassium, M.L.E., Payen, C.: Electrochemical synthesis for the control of gamma-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater. 11, 141–147 (1999)CrossRefGoogle Scholar
  15. 15.
    Sidorov, S.N., Bronstein, L.M., Davankov, V.A., Tsyurupa, M.P., Solodovnikov, S.P., Valetsky, P.M., Wilder, E.A., Spontak, R.J.: Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene: control of nanoparticle growth and morphology. Chem. Mater. 11, 3210–3215 (1999)CrossRefGoogle Scholar
  16. 16.
    Koksharov, Y.A., Pankratov, D.A., Gubin, S.P., Kosobudsky, I.D., Beltran, M., Khodorkovsky, Y., Tishin, A.M.: Electron paramagnetic resonance of ferrite nanoparticles. J. Appl. Phys. 89, 2293–2298 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Cullity, B.D.: Introduction to Magnetic Materials. Addison-Wesley, London (1972)Google Scholar
  18. 18.
    Mitra, S., Mandal, K., Kumar, P.A.: Temperature dependence of magnetic properties of NiFe2O4 nanoparticles embedded in SiO2 matrix. J. Magn. Magn. Mater. 306, 254–259 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. S. Umare
    • 1
  • R. S. Ningthoujam
    • 2
  • S. J. Sharma
    • 3
  • S. Shrivastava
    • 4
  • Sajith Kurian
    • 4
  • N. S. Gajbhiye
    • 4
  1. 1.Department of ChemistryVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of ElectronicsS. K. Porwal CollegeNagpurIndia
  4. 4.Department of ChemistryIndian Institute of TechnologyKanpurIndia

Personalised recommendations