Advertisement

Hyperfine Interactions

, Volume 184, Issue 1–3, pp 179–184 | Cite as

Influence of silicon and cobalt substitutions on magnetostriction coefficient of cobalt ferrite

  • G. S. N. Rao
  • O. F. Caltun
  • K. H. Rao
  • B. Parvatheeswara Rao
  • H. L. Wamocha
  • H. H. Hamdeh
Article

Abstract

Co1 + x Si x Fe2 − 2x O4 ferrite system has been studied to estimate the influence of Si and Co substitutions together on the magnetic and magnetostrictive properties. The samples were prepared by standard double sintering ceramic technique. X-ray diffraction patterns of the study confirm spinel crystal structures. Hysteresis and magnetostriction measurements were made on all the samples at room temperature. Mössbauer spectra were also made both at 300 K and at 4 K under the applied field of 5 T in the direction of gamma ray. Nominal decreases in Curie temperature and saturation magnetization were observed. The strain derivative, which relates to stress sensitivity, is observed to increase from 1.13 × 10 − 9 to 2.51 × 10 − 9 Å − 1 m for x = 0.2 silicon concentration. The variations are explained on the basis of the strength of the exchange interactions between cations, and anisotropy modifications induced by migration of cobalt ions. The results demonstrate the possibility of controlling the magnetic and magnetomechanical properties through Co and Si substitutions.

Keywords

Curie temperature Strain derivative Mössbauer spectra Magnetostriction Magnetic properties 

PACS

75.80.+q 76.30.Da 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCallum, R.W., et al.: Composite magnetostrictive materials for advanced automotive magnetomechanical sensors. Low Temp. Phys. 27, 266–274 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Chen, Y., et al.: Temperature dependence of the magnetomechanical effect in metal bonded cobalt ferrite composites under torsional strain. J. Appl. Phys. 87, 5789–5800 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Caltun, O.F., et al.: High magnetostrictive cobalt for stress sensor applications. Sensors Lett. 5, 45 (2007)CrossRefGoogle Scholar
  4. 4.
    Slonczewski, J.C.: Anisotropy and magnetostriction in magnetic oxides. J. Appl. Phys. 32, 253S–262S (1961)CrossRefADSGoogle Scholar
  5. 5.
    Sekhar, D.B., Joy, P.A.: Enhanced magnetostrictive properties of Mn substitute cobalt ferriteCo1.2Fe1.8O4. J. Appl. Phys. 99, 073901 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Varret, F., Gerard, A., Imbert, P.: Magnetic field distribution analysis of the broadened Mössbauer spectra of zinc ferrite. Phys. Status Solidi, B Basic Res. 43, 723 (1971)CrossRefGoogle Scholar
  7. 7.
    Evans, B.J., Hafner, S.S.: Mössbauer resonance of Fe57 in oxidic spinels containing Cu and Fe. J. Phys. Chem. Solids 29, 1573–1588 (1968)CrossRefADSGoogle Scholar
  8. 8.
    Shinde, S.S., et al.: Magnetic properties of the mixed spinelCo1 + xSixFe2 − 2xO4. Bull. Mater. Sci. 21, 409 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. S. N. Rao
    • 1
  • O. F. Caltun
    • 2
  • K. H. Rao
    • 1
  • B. Parvatheeswara Rao
    • 1
    • 3
  • H. L. Wamocha
    • 4
  • H. H. Hamdeh
    • 4
  1. 1.Department of PhysicsAndhra UniversityVisakhapatnamIndia
  2. 2.Faculty of PhysicsA.I. Cuza UniversityIasiRomania
  3. 3.ReCAMMChungnam National UniversityDaejonKorea
  4. 4.Department of PhysicsWichita State UniversityWichitaUSA

Personalised recommendations