Hyperfine Interactions

, Volume 183, Issue 1–3, pp 49–53 | Cite as

Mössbauer and magnetization studies of iron oxide nanocrystals

  • Lennart Häggström
  • Saeed Kamali
  • Tore Ericsson
  • Per Nordblad
  • Anwar Ahniyaz
  • Lennart Bergström


Monodisperse iron oxide nanocrystals have been produced following non-hydrolytic, thermal decomposition routes. Spherically shaped particles with diameter of 4 and 12 nm and cubic shaped particles with an edge length of 9 nm have been studied. The particles have been shown to consist of mainly maghemite. A reduction of the saturation magnetic hyperfine field is observed for the 4 nm particles as compared to the corresponding bulk value. The anisotropy energy determined from the temperature variation of the magnetic hyperfine field was strongly enhanced for the 4 nm particles.


Maghemite nanoparticles Anisotropy energy Mössbauer spectroscopy Magnetization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun, S., Murray, C.B.: Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4325 (1999)CrossRefADSGoogle Scholar
  2. 2.
    Hergt, R., et al.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Tucek, J., Zboril, R., Petridis, D.: Maghemite nanoparticles by view of Mössbauer spectroscopy. J. Nanosci. Nanotechnol. 6, 926–947 (2006)CrossRefGoogle Scholar
  4. 4.
    Ahniyaz, A., et al.: Preparation of iron oxide nanocrystals by surfactant-free or oleic acid-assisted thermal decomposition of a Fe(III) alkoxide. J. Magn. Magn. Mater. 320, 781 (2008)Google Scholar
  5. 5.
    Vandenberghe, R.E., de Grave, E.: Mössbauer effect studies of oxidic spinels. In: Long, G.J., Grandjean, F. (eds.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 3, pp. 59–182. Plenum Press, New York (1989)Google Scholar
  6. 6.
    Tronc, E.: Nanoparticles. Il Nuovo Cim. 18D, 163 (1996)ADSGoogle Scholar
  7. 7.
    Annersten, H., Hafner, S.S.: Vacancy distribution in synthetic spinels of the series Fe3O4γ-Fe2O3. Z. Kristallogr. 137, 321 (1973)Google Scholar
  8. 8.
    Bowen, L.H., de Grave, E., Bryan, A.M.: Mössbauer studies in an external field of well-crystallized Al-maghemites made from hematite. Hyperfine Interact. 94, 1977–1982 (1994)CrossRefADSGoogle Scholar
  9. 9.
    Mørup, S.: Magnetic hyperfine splitting in Mössbauer spectra of microcrystals. J. Magn. Magn. Mater 37, 39–50 (1983)CrossRefADSGoogle Scholar
  10. 10.
    Prené, P., Tronc, E., Jolivet, J.P., Dormann, J.L.: In: Ortalli, I. (ed.) Mössbauer Spectra of γ-Fe2O3 Nanoparticles. Italian Physical Society, Conference Proceedings, vol. 50, pp. 485. Bologna (1996)Google Scholar
  11. 11.
    Johansson, C., Hansson, M., Pedersen, M.S., Mørup, S.: Magnetic properties of magnetic liquids with iron-oxide particles—the influence of anisotropy and interactions. J. Magn. Magn. Mater. 173, 5–14 (1997)CrossRefADSGoogle Scholar
  12. 12.
    Hansen, M.F., Mørup, S.: Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203, 214–216 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lennart Häggström
    • 1
  • Saeed Kamali
    • 1
    • 2
  • Tore Ericsson
    • 1
  • Per Nordblad
    • 3
  • Anwar Ahniyaz
    • 4
  • Lennart Bergström
    • 4
  1. 1.Department of PhysicsUppsala UniversityUppsalaSweden
  2. 2.Nano Research CentreAmirkabir UniversityTehranIran
  3. 3.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  4. 4.Department of Physical, Inorganic and Structural ChemistryStockholm UniversityStockholmSweden

Personalised recommendations