Hyperfine Interactions

, 178:37 | Cite as

TDPAC study of Cd-doped SnO

  • E. L. Muñoz
  • A. W. Carbonari
  • L. A. Errico
  • A. G. Bibiloni
  • H. M. Petrilli
  • M. Rentería


The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in 111In-implanted Sn-O thin films. Here we present new TDPAC experiments at 111In-difused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295–900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.


SnO Cd TDPAC Electric-field gradient 


  1. 1.
    Schatz, G., Weidinger, A.: Nuclear Condensed Matter Physics: Nuclear Methods and Applications, p. 63. Wiley, Chichester, England (1996)Google Scholar
  2. 2.
    Maier, K., Vianden, R. (eds.): In: Proceedings of the 13th International Conference on Hyperfine Interactions and 17th International Symposium on Nuclear Quadrupole Interactions, held in Bonn, Germany, 22–27 August 2004. Hyperfine Interact. 158/159. Springer Netherlands (2004)Google Scholar
  3. 3.
    Kaufmann, E.N., Vianden, R.J.: The electric field gradient in noncubic metals. Rev. Mod. Phys. 51, 161–214 (1979)CrossRefADSGoogle Scholar
  4. 4.
    Lerf, A., Butz, T.: Nuclear quadrupole interactions in compounds studied by time differential perturbed angular correlations/distributions. Hyperfine Interact. 36, 275–370 (1987)CrossRefADSGoogle Scholar
  5. 5.
    Lerf, A., Butz, T.: Nuclear quadrupole interaction and time-resolved PAC spectroscopy: applications in chemistry, material science and biophysical chemistry. Angew. Chem. Int. Ed. Engl. 26, 110–126 (1987)CrossRefGoogle Scholar
  6. 6.
    Rentería, M., Bibiloni, A.G., Moreno, M.S., Desimoni, J., Mercader, R.C., Bartos, A., Uhrmacher, M., Lieb, K.P.: Hyperfine interactions of 111In implanted tin oxide thin films. J. Phys. Cond. Matt. 3, 3625–3634 (1991)CrossRefADSGoogle Scholar
  7. 7.
    Errico, L.A., Rentería, M., Petrilli, H.M.: Cd in SnO: probing structural effects on the electronic structure of doped oxide semiconductors through the electric field gradient at the Cd nucleus. Phys. Rev. B 75, 155209–1/9 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Wang, X., Zhang, F.X., Loa, I., Syassen, K., Hanfland, M., Mathins, Y.-L.: Structural properties, infrared reflectivity, and Raman modes of SnO at high pressure. Phys. Stat. Solidi (b). 241, 3168–3178 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Bäverstam, U., Othaz, R., De Sousa, N., Ringström, B.: After-effects in the decay of 75As and 197mHg. Nucl. Phys. A 186, 500–512 (1972)CrossRefADSGoogle Scholar
  10. 10.
    Abragam, A., Pound, R.V.: Influence of electric and magnetic fields on angular correlations. Phys. Rev. 92, 943–962 (1953)MATHCrossRefADSGoogle Scholar
  11. 11.
    Wolf, H., Deubler, S., Forkel, D., Foettinger, H., Iwatschenko-Borho, M., Meyer, M., Renn, M., Witthuhn, W.: Acceptors and donors in the wide-gap semiconductors ZnO and SnO2. Mat. Sci. Forum. 10–12, 863–868 (1986)CrossRefGoogle Scholar
  12. 12.
    Bibiloni, A.G., Desimoni, J., Massolo, C.P., Rentería, M.: Hyperfine interaction between indium atoms and oxygen vacancies in stannic oxide. Phys. Rev. B 38, 20–25 (1988)CrossRefADSGoogle Scholar
  13. 13.
    Herzog, P., Freitag, K., Reuschenbach, M., Walitzki, H.: Nuclear orientation of 111mCd in Zn and Be and the quadrupole moment of the 245keV state. Z. Phys. A 294, 13–15 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. L. Muñoz
    • 1
  • A. W. Carbonari
    • 2
  • L. A. Errico
    • 1
    • 3
  • A. G. Bibiloni
    • 4
  • H. M. Petrilli
    • 5
  • M. Rentería
    • 1
  1. 1.Departamento de Física-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Instituto de Pesquisas Energéticas y Nucleares-IPEN-CNEN/SPSão PauloBrazil
  3. 3.Universidad Nacional del Noroeste Bonaerense (UNNOBA)Buenos AiresArgentina
  4. 4.Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  5. 5.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations