Hyperfine Interactions

, Volume 175, Issue 1–3, pp 165–174 | Cite as

First-principles calculation of nuclear resonance vibrational spectra



We present a ‘first-principles’ methodology for the calculation of the parameters that are required for the simulation of nuclear resonance vibrational spectra (NRVS) of molecular systems. Formulae are given for the intensities of vibrational transitions corresponding to the so-called single- and double-phonon contributions to the NRVS signal. The method is also valid for those vibrations that are not in the high-frequency/low-temperature limit. We have rigorously treated the issue of orientational averaging of the Lamb–Mössbauer factor and the effect of the neglect of its anisotropy on the calculated NRVS pattern. Normal mode composition factors are determined in a compact form as appropriate components of an orthogonal matrix that diagonalizes the Hessian matrix. The method is illustrated by simulating the NRVS spectra and the partial vibrational density of states of [FeO(H2O)5]2+ on the basis of vibrational frequencies and normal mode composition factors obtained from density functional theory (DFT) calculations.

PACS numbers

3115Ar 3320Tp 2930Kv 8280Ej 


First-principles calculation Nuclear resonance vibrational spectra Partial vibrational density of states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Hove, L.: Phys. Rev. 95, 249 (1954)CrossRefADSMATHGoogle Scholar
  2. 2.
    Visscher, W.M.: Ann. Phys. 9, 194 (1960)CrossRefADSGoogle Scholar
  3. 3.
    Singwi, K.S., Sjölander, A.: Phys. Rev. 120, 1093 (1960)CrossRefADSGoogle Scholar
  4. 4.
    Zemach, A.C., Glauber, R.J.: Phys. Rev. 101, 118 (1956)CrossRefADSMATHGoogle Scholar
  5. 5.
    Sturhahn, W., Kohn, V.G.: Hyperfine Interact. 123–124, 367–399 (1999)CrossRefGoogle Scholar
  6. 6.
    Sage, J.T., Paxson, C., Wyllie, G.R.A., Sturhahn, W., Durbin, S.M., Champion, P.M., Alp, E.E., Scheidt, W.R.: J. Phys. Condens. Matter 13, 7707 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Sturhahn, W.: J. Phys. Cond. Matter 16, S497 (2004)CrossRefADSGoogle Scholar
  8. 8.
    Paulsen, H., Benda, R., Herta, C., Schünemann, V., Chumakov, A.I., Duelund, L., Winkler, H., Toftlund, H., Trautwein, A.X.: Phys. Rev. Lett. 86, 1351 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, p. 374. Dover, New York (1972)MATHGoogle Scholar
  10. 10.
    Neese, F.: An ab initio, density functional and semiempirical program package, version 2.6.35. University of Bonn, Germany (2008)Google Scholar
  11. 11.
    Pestovsky, O., Stoian, S., Bominaar, E.L., Shan, X.P., Münck, E., Que Jr., L., Bakac, A.: Angew. Chem. Int. Ed. 44, 6871 (2005)CrossRefGoogle Scholar
  12. 12.
    Schäfer, A., Huber, C., Ahlrichs, R.: J. Chem. Phys. 100, 5829 (1994)CrossRefADSGoogle Scholar
  13. 13.
    Leu, B.M., Zgiersky, M.Z., Graeme, R.A.W., Scheidt, W.R., Sturhahn, W., Alp, E.E., Durbin, S.M., Sage, J.T.: J. Am. Chem. Soc. 126, 4211 (2004)CrossRefGoogle Scholar
  14. 14.
    Xiao, Y., Fisher, K., Smith, M.C., Newton, W.E., Case, D.A., George, S.J., Wang, H., Sturhahn, W., Alp, E.E., Zhao, J., Yoda, J., Cramer, S.P.: J. Am. Chem. Soc. 128, 7608 (2006)CrossRefGoogle Scholar
  15. 15.
    Leu, B.M., Silvernail, N.J., Zgiersky, M.Z., Graeme, R.A.W., Ellison, M.K., Scheidt, W.R., Zhao, J., Sturhahn, W., Alp, E.E., Sage, J.T.: Biophys. J. 92, 3764–3783 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Taras Petrenko
    • 1
  • Wolfgang Sturhahn
    • 2
  • Frank Neese
    • 1
  1. 1.Institute for Physical and Theoretical ChemistryBonn UniversityBonnGermany
  2. 2.Advanced Photon Source, Argonne National LaboratoryArgonneUSA

Personalised recommendations