Advertisement

Hyperfine Interactions

, Volume 171, Issue 1–3, pp 233–241 | Cite as

Experimental investigation of the stability diagram for Paul traps in the case of praseodymium ions

  • W. Koczorowski
  • G. Szawioła
  • A. Walaszyk
  • A. Buczek
  • D. Stefańska
  • E. Stachowska
Article

Abstract

The present paper describes an investigation of non-linear resonances of praseodymium ion clouds stored in a Paul trap as a function of the storage parameters. These have been observed in traps with different ring electrode diameters. In these different traps the resonances occur for different values of the operating parameters. Discrepancies with the approximation model for one ion have been found. The intensity of the fluorescence signal and the Doppler half width have been recorded as a function of one of the storage parameters: q. We use our results to optimize the fluorescence signal of the stored ions, which is especially useful in the case of the double-resonance method.

Key words

Paul trap non-linear resonances laser spectroscopic investigations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mathieu, E.: J. des Mathémathiques Pure et Appliquées, 137–203 (1868)Google Scholar
  2. 2.
    McLachlan, N.W.: Theory and Applications of Mathieu Functions. Clarendon, Oxford (1947)Google Scholar
  3. 3.
    Fisher, E.: Z. Phys. 156, 1–26 (1959)CrossRefADSGoogle Scholar
  4. 4.
    Schwebel, C., Moller, P.A., Manh, P.-T.: Rev. Phys. Appl. 10, 227–239 (1975)Google Scholar
  5. 5.
    Vedel, F., André, J., Vedel, M., Brincourt, G.: Phys. Rev., A. 27, 2321–2330 (1983)CrossRefADSGoogle Scholar
  6. 6.
    Meis, C., Desaintfuscien, M., Jardino, M.: Appl. Phys., B. 45, 59–64 (1988)CrossRefADSGoogle Scholar
  7. 7.
    Alheit, R., Enders, K., Werth, G.: Appl. Phys., B. 62, 511–513 (1996)CrossRefADSGoogle Scholar
  8. 8.
    Major, F.G., Gheorghe, V.N., Werth, G.: Charged particle physics. In: Springer Series on Atomic, Optical, and Plasma Physics, vol. 37. Springer, Berlin Heidelberg New York (2005)Google Scholar
  9. 9.
    Madsen, M.J., Hensinger, W.K., Stick, D., Rabchuk, J.A., Monroe, C.: Appl. Phys., B. 78, 639–651 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Alheit, R., Gudjons, Th., Kleineidam, S., Werth, G.: Rapid Commun. Mass Spectrom. 10, 583–590 (1996)CrossRefGoogle Scholar
  11. 11.
    Dembczyński, J., Stefańska, D., Szawioła, G., Furmann, B., Stachowska, E., Jarosz, A., Arcimowicz, B., Buczek, A., Koczorowski, W., Krzykowski, A., Kajoch, A., Elantkowska, M., Ruczkowski, J., Kowalkiewicz, W.: Act. Phys. Pol., A. 92, 517–526 (1997)Google Scholar
  12. 12.
    Stachowska, E., Szawioła, G., Buczek, A., Koczorowski, W., Furmann, B., Stefańska, D., Walaszyk, A., Dembczyński, J.: M & MS 13, 207–217 (2006)Google Scholar
  13. 13.
    Gudjons, T., Seibert, P., Werth, G.: Appl. Phys., B. 65, 57–62 (1997)CrossRefADSGoogle Scholar
  14. 14.
    Zdrojewski, S.: M.Sc. Thesis, Poznań (2004)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • W. Koczorowski
    • 1
  • G. Szawioła
    • 1
  • A. Walaszyk
    • 1
  • A. Buczek
    • 1
  • D. Stefańska
    • 1
  • E. Stachowska
    • 1
  1. 1.Chair of Quantum Engineering and MetrologyPoznan University of TechnologyPoznanPoland

Personalised recommendations