Advertisement

Hyperfine Interactions

, Volume 167, Issue 1–3, pp 785–790 | Cite as

119Sn Mössbauer study of nickel–tin anodes for rechargeable lithium-ion batteries

  • S. Naille
  • P. E. Lippens
  • F. Morato
  • J. Olivier-Fourcade
Article

Abstract

119Sn Mössbauer spectrometry has been carried out on Ni–Sn alloys (Ni3Sn LT, Ni3Sn2 LT and Ni3Sn4) and combined with ab initio calculations. Lithium insertion/extraction mechanisms of the most interesting compound (Ni3Sn4) have been studied from 119Sn Mössbauer measurements. The first discharge shows a plateau close to 0.0 V, which can be attributed to the formation of the Li7Sn2 alloy.

Key words

119Sn Mössbauer spectrometry lithium-ion batteries intermetallic compounds lithium insertion mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sato, K., Noguchi, M., Demachi, A., Oki, N., Endo, M.: Science 264, 556 (1994)CrossRefADSGoogle Scholar
  2. 2.
    Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Science 270, 590 (1995)CrossRefADSGoogle Scholar
  3. 3.
    Johnson, B.A., White, R.E.: J. Power Sources 70, 48 (1998)CrossRefGoogle Scholar
  4. 4.
    Huggins, R.A.: J. Power Sources 81–82, 13 (1999)CrossRefGoogle Scholar
  5. 5.
    Chouvin, J., Olivier-Fourcade, J., Jumas, J.C., Simon, B., Godiveau, O.: Chem. Phys. Lett. 308, 413 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Wachtler, M., Besenhard, J.O., Winter, M.: J. Power Sources 94, 189 (2001)CrossRefGoogle Scholar
  7. 7.
    Winter, M., Besenhard, J.O.: Electrochim. Acta 45, 31 (1999)CrossRefGoogle Scholar
  8. 8.
    Cheng, X.Q., Shi, P.F.: J. Alloys Compd. 391, 241 (2005)CrossRefGoogle Scholar
  9. 9.
    Kepler, K.D., Vaughey, J.T., Thackeray, M.: Electrochem. Solid-State Lett. 2, 307 (1999)CrossRefGoogle Scholar
  10. 10.
    Blaha, P., Schwarz, K., Luitz, J.: WIEN97. Vienna University of Technology (1997) (improved and updated Unix version of the original copyright WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Commun. 59 (1990) 399)Google Scholar
  11. 11.
    Lyubimtsev, A.L., Baranov, A.I., Fischer, A., Kloo, L., Popovkin, B.A.: J. Alloys Compd. 340, 167 (2002)CrossRefGoogle Scholar
  12. 12.
    Fjellvag, H., Kjekshus, A.: Acta Chem. Scand., A 40, 23 (1986)CrossRefGoogle Scholar
  13. 13.
    Jeitschko, W., Jaberg, B.: Acta Crystallogr., B 38, 598 (1982)CrossRefGoogle Scholar
  14. 14.
    Mildenberger, R., Venskutonis, A., Aubertin, F., Breme, J., Schwitzgebel, G.: Hyperfine Interact. 112, 151 (1998)CrossRefADSGoogle Scholar
  15. 15.
    Lippens, P.E., Olivier-Fourcade, J., Jumas, J.C.: Hyperfine Interact. 126, 137 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Lippens, P.E., Jumas, J.C., Olivier-Fourcade, J.: Hyperfine Interact. 156/157, 327 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Robert, F., Lippens, P.E., Fourcade, R., Jumas, J.C., Gillot, F., Morcrette, M., Tarascon, J.M.: Hyperfine Interact. (2006, this volume)Google Scholar
  18. 18.
    Bahgat, A.A.: Phys. Status Solidi. B 97, K129 (1980)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. Naille
    • 1
  • P. E. Lippens
    • 1
  • F. Morato
    • 1
  • J. Olivier-Fourcade
    • 1
  1. 1.Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (CNRS UMR 5072)Université Montpellier IIMontpellier cedex 5France

Personalised recommendations