Advertisement

Hyperfine Interactions

, Volume 163, Issue 1–4, pp 109–119 | Cite as

Reaction Kinetics and Oxidation Mechanisms of the Conversion of Pyrite to Ferrous Sulphate: A Mössbauer Spectroscopy Study

  • Embaie A. Ferrow
  • Maria Mannerstrand
  • Bosse Sjöberg
Article

Abstract

Pyrite undergoes a series of exothermic reactions during mine roasting to porous hematite. At low temperatures, the first non-refractive phase to form is ferrous sulphate and could be a cheaper alternative to hematite roasting for the mining industry. In this study, pyrite powder is heated in air at temperatures between 200 and 370 °C for 1 to 256 h in a temperature and time series. The rate of oxidation of pyrite to ferrous sulphate is modelled by combining the Arrhenius equation with the Weibull function to extract reliable thermodynamic data, including the energy of activation, the frequency factor and the overall order of reaction. From the thermodynamic data obtained, two possible oxidation mechanisms are recognized, depending on the bond dissociation energies of the S–S and Fe–S bonds in pyrite.

Key Words

activation energy ferrous sulphate mechanisms Mössbauer pyrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferrow E. A. and Sjöberg B. A., Hyp. Int. (2004).Google Scholar
  2. 2.
    Ferrow E. A., Kalinowski B. E., Veblen D. R. and Schweda P., Eur. J. Mineral. 11 (1999), 999.Google Scholar
  3. 3.
    Eymery J.-P., Eur. Phys. J. AP 5 (1999), 15.CrossRefGoogle Scholar
  4. 4.
    Zboril R., Mashlan M. and Petridis D., Chem. Mater. 14 (2002), 969.CrossRefGoogle Scholar
  5. 5.
    Eneroth E. and Bender-Koch C., Miner. Eng. 16 (2003), 1257.CrossRefGoogle Scholar
  6. 6.
    Heinrich W., Metz P. and Gottschalk M., Contrib. Mineral. Petrol. 102 (1989), 163.CrossRefGoogle Scholar
  7. 7.
    Jacob L., Glass Process. Days 18 (2001), 108.Google Scholar
  8. 8.
    Wang G., Spencer J. and Elsayed T., In: 22nd International Conference on Offshore Mechanics and Arctic Engineering Cancun, Mexico, 2003.Google Scholar
  9. 9.
    Ferrow E. A., Eur. J. Mineral. 14 (2002), 85.CrossRefGoogle Scholar
  10. 10.
    van Vuuren P. J. J. and Lubbe A. C., ISHS Acta Hortic. 517 (2000) in: XXV International Horticultural Congress, Part 7, M. Herregods ed.Google Scholar
  11. 11.
    ReliaSoft Corporation, Reliability HotWire (2002), 17.Google Scholar
  12. 12.
    McCormick N. J., In: Reliability and Risk Analysis: Methods and Nuclear Power Applications, Academic, New York, 1981, p. 446.Google Scholar
  13. 13.
    Rancourt D. G., Tume P. and Lalonde A. E., Phys. Chem. Miner. 20 (1993), 276.CrossRefGoogle Scholar
  14. 14.
    Husheey J. E., In: Inorganic Chemistry, 2nd Edition. Harper and Row, New York, 1978, p. 889.Google Scholar
  15. 15.
    Nesbitt H. W., Bancroft G. M., Pratt A. R. and Scaini M. J., Am. Mineral. 83 (1998), 1067.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Embaie A. Ferrow
    • 1
  • Maria Mannerstrand
    • 1
  • Bosse Sjöberg
    • 2
  1. 1.GeoBiosphere Science Centre, Department of Geology, Lithosphere Biosphere ScienceLund UniversityLundSweden
  2. 2.Swedish Museum of Natural HistoryStockholmSweden

Personalised recommendations