Hyperfine Interactions

, Volume 161, Issue 1–4, pp 83–92 | Cite as

Mössbauer and X-Ray Diffraction Investigations of a Series of B-Doped Ferrihydrites

  • John G. Stevens
  • Airat M. Khasanov
  • David R. Mabe


X-ray diffraction and 57Fe Mössbauer spectroscopy are used to characterize the influence of borate on two-line ferrihydrite's structure and develop likely models for its attachment. Particle sizes were in the 2–4 nm range, and as borate sorption increased, the ferrihydrite particle size decreased. The d-spacings of two-line ferrihydrite increased with increased borate adsorption. Isomer shift and quadrupole splitting exhibit slight increasing trends as well. Also, the phase transformation temperature of ferrihydrite to hematite is significantly raised due to borate coating of the surface. We suggest borate is sorbed onto the surface by attachment to the oxygen corners of the iron octahedra that are on the surface of the nanoparticles, placing boron in a tetrahedral molecular geometry.

Key Words

borate ferrihydrite Mössbauer spectroscopy nanoparticles powder X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Towe K. M. and Bradley W. F., J. Coll. Int. Sci. 24 (1967), 384.CrossRefGoogle Scholar
  2. 2.
    Schwertmann U. and Cornell R. M., Iron Oxides in the Laboratory: Preparation and Characterization, Weinheim, 2000.Google Scholar
  3. 3.
    Jambor J. and Dutrizac J., Chem. Rev. 98 (1998), 2549.CrossRefGoogle Scholar
  4. 4.
    Eggleton R. A. and Fitzpatrick R. W., Clay Miner. 36 (1988), 111.CrossRefGoogle Scholar
  5. 5.
    Cardile C. M., Clay Miner. 36 (1988), 537.CrossRefGoogle Scholar
  6. 6.
    Pankhurst Q. A. and Pollard R. J., Clay Miner. 40 (1992), 268.CrossRefGoogle Scholar
  7. 7.
    Parida K. M. et al., J. Coll. Int. Sci. 185 (1997), 355.CrossRefGoogle Scholar
  8. 8.
    Dzombak D. A. and Morel F. M., Surface Complexation Modeling: HFO, New York, 1990.Google Scholar
  9. 9.
    Stevens J. G., Khasanov A. M. and White M. G., Hyp. Inter. 151/152 (2003), 283.CrossRefADSGoogle Scholar
  10. 10.
    Barr R. D., Barton S. A. and Schull W. J., Med. Hyp. 46 (1996), 286.CrossRefGoogle Scholar
  11. 11.
    Nielsen F. H., Env. Hlth. Persp. Suppl. 102 (1994), 59.CrossRefGoogle Scholar
  12. 12.
    Murad E. and Schwertmann U., Am. Miner 65 (1980), 1044.Google Scholar
  13. 13.
    Gotic M. et al., J. Mat. Sci. 29 (1994), 2474.CrossRefGoogle Scholar
  14. 14.
    Hofmann A. et al., J. Col. Int. Sci. 271 (2004), 163.CrossRefGoogle Scholar
  15. 15.
    Pollack H. et al., J. Phys. (Paris) Colloq. C-6 37 (1976), 585.ADSGoogle Scholar
  16. 16.
    Mitov I. G. et al., J. Alloys Cmpd. 289 (1999), 55.CrossRefGoogle Scholar
  17. 17.
    Douvalis A. P. et al., Hyp. Inter. 126 (2000), 319.CrossRefADSGoogle Scholar
  18. 18.
    Murad E., Phys. Chem. Miner. 23 (1996), 248.CrossRefADSGoogle Scholar
  19. 19.
    van der Kraan A. M., Phys. Stat. Sol. 18 (1973), 215.CrossRefGoogle Scholar
  20. 20.
    Johnston J. H. and Logan N. E., J. Chem. Soc. Dalton Trans. 13 (1979), 13.CrossRefGoogle Scholar
  21. 21.
    Murad E. et al., Clay Miner. 23 (1988), 161.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • John G. Stevens
    • 1
  • Airat M. Khasanov
    • 1
  • David R. Mabe
    • 1
  1. 1.Mössbauer Research Group, Department of ChemistryUniversity of North Carolina at AshevilleAshevilleUSA

Personalised recommendations