Hyperfine Interactions

, Volume 163, Issue 1–4, pp 29–56 | Cite as

Frequency Spectra of Quantum Beats in Nuclear Forward Scattering of 57Fe: The Mössbauer Spectroscopy with Superior Energy Resolution

  • A. I. Rykov
  • I. A. Rykov
  • K. Nomura
  • X. Zhang


Frequency spectra of quantum beats (QB) in nuclear forward scattering (NFS) are analysed and compared to Mössbauer spectra. Lineshape, number of lines, sensitivity to minor sites, and other specific properties of the frequency spectra are discussed. The most characteristic case of combined magnetic and quadrupole interactions is considered in detail for 57Fe. Pure magnetic Zeeman splitting corresponds to a eight-line spectrum of QB, six of which show the same energy separation as the six lines in Mössbauer spectra. Two other lines (called 2′ and 3′) are the lower-energy satellites of the lines 2 and 3. As the quadrupole interaction E Q appears, the satellites remain unsplit in the quantum beat frequency spectra, as well as the first (zero-frequency) and the 6th (largest frequency) lines. Each of the lines 3 and 5 generates a doublet split by 2E Q, and the lines 2 and 4 generate triplets. In QB frequency spectra (QBFS) of thin absorbers of GdFeO3 we demonstrate the enhanced spectral resolution compared to Mössbauer spectra. Small particle size in an antiferromagnet (Fe2O3) was found to affect the QBFS via enhancement of the intensity around zero-frequencies. An asymmetric hyperfine field distribution mixes up into the hybridization with dynamical beats, which enlarges the frequencies of the low-lying QBFS lines and makes their shifts relatively large compared to the shift of the highest-frequency line.


nuclear resonant scattering synchrotron radiation Mössbauer spectroscopy in time domain quantum beats nuclear forward scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trammell, G. T. and Hannon, J. P., Phys. Rev. B 18 (1978), 165–172; Phys. Rev. B 19 (1978), 3835. CrossRefADSGoogle Scholar
  2. 2.
    Kagan, Yu., Afanas'ev, A. M. and Kohn, V. G., Physics Letters 68A (1978), 339. ADSGoogle Scholar
  3. 3.
    Kagan, Yu., Afanas'ev, A. M. and Kohn, V. G., J. Phys. C 12 (1979), 615. CrossRefADSGoogle Scholar
  4. 4.
    Gerdau, E., Rüffer, R., Hollatz, R. and Hannon, J. P., Phys. Rev. Lett. 57 (1986), 1141. CrossRefADSGoogle Scholar
  5. 5.
    Chechin, A. I., Andronova, N. V., Zelepukhin, M. V., Artem'ev, A. N. and Stepanov, E. P., Pis'ma Zh. Exp. Teor. Fiz. 37 (1983), 531. [JETP Lett. 37 (1983), 633.] ADSGoogle Scholar
  6. 6.
    Faigel, G., Siddons, D. P., Hastings, J. B., Haustein, P. E., Grover, J. R. and Berman, L. E., Phys. Rev. Lett. 61 (1988), 2794. CrossRefADSGoogle Scholar
  7. 7.
    Hastings, J. B., Siddons, D. P., van Bürck, U., Hollatz, R. and Bergmann, U., Phys. Rev. Lett. 66 (1991), 771. CrossRefADSGoogle Scholar
  8. 8.
    Margulies, S., Debrunner, P. and Frauenfelder, H., Nucl. Instr. Meth. 21 (1963), 217. CrossRefGoogle Scholar
  9. 9.
    Smirnov, G. V., Hyp. Interact. 123/124 (1999), 31. CrossRefGoogle Scholar
  10. 10.
    Shvyd'ko, Yu. V., Phys. Rev. B 59 (1999), 9132. CrossRefADSGoogle Scholar
  11. 11.
    Haas, M., Realo, E., Winkler, H., Meyer-Klaucke, W., Trautwein, A. X., Leupold, O. and Rüter, H. D., Phys. Rev. B 56 (1997), 14028. Google Scholar
  12. 12.
    Sturhahn, W. and Gerdau, E., Phys. Rev. B 49 (1994) 9285. CrossRefADSGoogle Scholar
  13. 13.
    Shvyd'ko, Yu. V., Hyp. Interact. 125 (2000), 173. CrossRefGoogle Scholar
  14. 14.
    Zhang, L., Stanek, J., Hafner, S. S., Ahsbahs, H., Grünsteudel, H. F., Metge, J. and Rüffer, R., American Mineralogist 84 (1999), 447. Google Scholar
  15. 15.
    Odeurs, J., Hoy, G. R., L'Abbé, C., Koops, G. E. J., Pattyn, H., Shakhmuratov, R. N., Coussement, R., Chiodini, N. and Paleari, A., Hyp. Interact. 139 (2002), 685. CrossRefGoogle Scholar
  16. 16.
    Odeurs, J., Coussement, R. and L'abbe, C., Phys. Rev. B 60 (1999), 7140. CrossRefADSGoogle Scholar
  17. 17.
    Kobayashi, H., Yoda, Y. and Kamimura, T., J. Phys. Soc. Jpn. 70 (2001), 1128. CrossRefGoogle Scholar
  18. 18.
    Röhlsberger, R., Bansmann, J., Senz, V., Jonas, K. L., Bettac, A., Meiwes-Broer, K. H. and Leupold, O., Phys. Rev. B 67 (2003), 245412. CrossRefADSGoogle Scholar
  19. 19.
    Smirnov, G. V., Hyp. Interact. 97/98 (1996), 551. CrossRefGoogle Scholar
  20. 20.
    van Bürck, U., Siddons, D. P., Hastings, J. B., Bergmann, U. and Hollatz, R., Phys. Rev. B 46 (1992), 6207. CrossRefADSGoogle Scholar
  21. 21.
    Shvyd'ko, Yu. V., van Bürck, U., Potzel, W., Schindelmann, P., Gerdau, E., Leupold, O., Metge, J., Rüter, H. D. and Smirnov, G. V., Phys. Rev. B 57 (1998), 3552. CrossRefADSGoogle Scholar
  22. 22.
    For the sake of simplicity, in this consideration, we negect the electronic absorption. Google Scholar
  23. 23.
    Grünsteudel, H., Haas, M., Leupold, O., Mandon, D., Matzanke, B. F., Meyer-Klaucke, W., Paulsen, H., Realo, E., Rüter, H. D., Trautwein, A. X., Weiss, R. and Winkler, H., Inorg. Chem. Acta 275–276 (1998), 334. CrossRefGoogle Scholar
  24. 24.
    Sturhahn, W., J. Phys.: Cond. Mat. 16 (2004), S497. CrossRefADSGoogle Scholar
  25. 25.
    Asthalter, T., Franz, H., van Bürck, U., Messel, K., Schreier, E. and Dinnebier, R., J. Phys. Chem. Solids 64 (2003), 677. CrossRefADSGoogle Scholar
  26. 26.
    Wertheim, G. K., Mössbauer Effect. Principles and Applications, Academic Press, New York, London, 1964. Google Scholar
  27. 27.
    Rykov, A., Caignaert, V., Nguyen, N., Maignan, A., Suard, E. and Raveau, B., Physica C 205 (1993), 63. CrossRefADSGoogle Scholar
  28. 28.
    Rykov, A., Ducouret, A., Nguyen, N., Caignaert, V., Studer, F. and Raveau, B., Hyp. Interact. 77 (1993), 277. CrossRefGoogle Scholar
  29. 29.
    Rykov, A. I., Pavlukhin, Yu. T. and Medikov, A. A., Proc. Indian Natn. Sci. Acad. 55A(5) (1989), 721. Google Scholar
  30. 30.
    Sepelak, V., Tkacova, K. and Rykov, A. I., Cryst. Res. Technol. 28 (1993), 53. Google Scholar
  31. 31.
    Algarabel, P. A., Morellon, L., de Teresa, J. M., Blasco, J., Garcia, J., Ibarra, M. R., Hernandez, T., Plazaola, F. and Barandiaran, J. M., J. Magn. Magn. Mater. 226–230 (2001), 1089. CrossRefGoogle Scholar
  32. 32.
    Rykov, A. I., Nomura, K., Sawada, Ts., Mitsui, T., Seto, M., Tamegai, T. and Tokunaga, M., Phys. Rev. B 68 (2003), 224401. CrossRefADSGoogle Scholar
  33. 33.
    Nomura, K., Tokumitsu, K., Hayakawa, T. and Homonnay, Z., J. Radioanal. Nucl. Chem. 246 (2000), 69. CrossRefGoogle Scholar
  34. 34.
    Juhász, G., Homonnay, Z., Nomura, K., Hayakawa, T., Hamakawa, S. and Vértes, A., Solid St. Ionics 139 (2001), 219. CrossRefGoogle Scholar
  35. 35.
    Pokholok, K. V., Presnyakov, I. A., Ketsko, V. A., Oleinikov, N. N. and Kuznetsov, N. T., Russian J. Coordination Chem. 27 (2001), 632. CrossRefGoogle Scholar
  36. 36.
    Homonnay, Z., Nomura, K., Juhasz, G., Gal, M., Solymos, K., Hamakawa, S., Hayakawa, T. and Vertes, A., Chem. Mater. 14 (2002), 1127. CrossRefGoogle Scholar
  37. 37.
    Stevens, J. G. and Stevens, V. E., Mössbauer Effect Data Index Covering the 1975 Literature, IFI, Plenum Press, New York, Washington, London, 1976. Google Scholar
  38. 38.
    Klencsar, Z., MOSSWINN 3.0i, Budapest, 1995–2002. Google Scholar
  39. 39.
    Shvyd'ko, Yu. V., Chumakov, A. I., Baron, A. Q. R., Gerdau, E., Ruffer, R., Bernhard, A. and Metge, J., Phys. Rev. B 54 (1996), 14942. CrossRefADSGoogle Scholar
  40. 40.
    Eibschütz, M., Shtrikman, S. and Treves, D., Phys. Rev. 156 (1967), 562. CrossRefADSGoogle Scholar
  41. 41.
    Marezio, M., Remeika, J. P. and Dernier, P. D., Acta Cryst. B 26 (1970), 2008. CrossRefGoogle Scholar
  42. 42.
    Kistner, O. C. and Sunyar, A. W., Phys. Rev. Lett. 8 (1960), 412. CrossRefADSGoogle Scholar
  43. 43.
    Xu, W. M., Naaman, O., Rozenberg, C. Kh., Pasternak, M. P. and Taylor, R. D., Phys. Rev. B 64 (2001), 094411. CrossRefADSGoogle Scholar
  44. 44.
    Pasternak, M. P., Rozenberg, G. Kh., Machavariani, G. Yu., Naaman, O., Taylor, R. D. and Jeanloz, R., Phys. Rev. Lett. 82 (1999), 4663. CrossRefADSGoogle Scholar
  45. 45.
    Lyubutin, I. S., Dmitrieva, T. V. and Stepin, A. S., JETP 88 (1999), 590. CrossRefADSGoogle Scholar
  46. 46.
    Rykov, A. I., In: S. Nasu and R. Coussement (eds), Nuclear Resonance with Synchrotron Radiation: Heterodyne Detection and Its Application to the Nano-Science (Proc. JSPS Belgium–Japan Binational Seminar), Osaka Univerity, Osaka, 2003. Google Scholar
  47. 47.
    Er-Rakho, L., Michel, C., Laccore, P. and Raveau, B., J. Solid St. Chem. 73 (1988), 531. CrossRefADSGoogle Scholar
  48. 48.
    Caignaert, V., Mirebau, I., Bouree, F., Nguyen, N., Ducouret, A., Greneche, J.-M. and Raveau, B., J. Solid St. Chem. 114 (1995), 24. CrossRefGoogle Scholar
  49. 49.
    Pissas, M., Kallias, G., Psycharis, V., Gamari-Seale, H., Niarchos, D., Simopoulos and Sonntag, R., Phys. Rev. B 55, 397. Google Scholar

Copyright information

© Kluwer Academic Publishers 2006

Authors and Affiliations

  • A. I. Rykov
    • 1
  • I. A. Rykov
    • 2
  • K. Nomura
    • 3
  • X. Zhang
    • 4
  1. 1.School of EngineeringThe University of TokyoHongoJapan
  2. 2.The Institute of MathematicsSiberian Branch of the Russian Academy of ScienceNovosibirskNovosibirskRussiaRussia
  3. 3.The School of EngineeringThe University of TokyoHongoJapan
  4. 4.High Energy Accelerator Research OrganizationInstitute of Materials Structure Science, Photon FactoryIbarakiJapan

Personalised recommendations