Skip to main content
Log in

Frequency Spectra of Quantum Beats in Nuclear Forward Scattering of 57Fe: The Mössbauer Spectroscopy with Superior Energy Resolution

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Frequency spectra of quantum beats (QB) in nuclear forward scattering (NFS) are analysed and compared to Mössbauer spectra. Lineshape, number of lines, sensitivity to minor sites, and other specific properties of the frequency spectra are discussed. The most characteristic case of combined magnetic and quadrupole interactions is considered in detail for 57Fe. Pure magnetic Zeeman splitting corresponds to a eight-line spectrum of QB, six of which show the same energy separation as the six lines in Mössbauer spectra. Two other lines (called 2′ and 3′) are the lower-energy satellites of the lines 2 and 3. As the quadrupole interaction E Q appears, the satellites remain unsplit in the quantum beat frequency spectra, as well as the first (zero-frequency) and the 6th (largest frequency) lines. Each of the lines 3 and 5 generates a doublet split by 2E Q, and the lines 2 and 4 generate triplets. In QB frequency spectra (QBFS) of thin absorbers of GdFeO3 we demonstrate the enhanced spectral resolution compared to Mössbauer spectra. Small particle size in an antiferromagnet (Fe2O3) was found to affect the QBFS via enhancement of the intensity around zero-frequencies. An asymmetric hyperfine field distribution mixes up into the hybridization with dynamical beats, which enlarges the frequencies of the low-lying QBFS lines and makes their shifts relatively large compared to the shift of the highest-frequency line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trammell, G. T. and Hannon, J. P., Phys. Rev. B 18 (1978), 165–172; Phys. Rev. B 19 (1978), 3835.

    Article  ADS  Google Scholar 

  2. Kagan, Yu., Afanas'ev, A. M. and Kohn, V. G., Physics Letters 68A (1978), 339.

    ADS  Google Scholar 

  3. Kagan, Yu., Afanas'ev, A. M. and Kohn, V. G., J. Phys. C 12 (1979), 615.

    Article  ADS  Google Scholar 

  4. Gerdau, E., Rüffer, R., Hollatz, R. and Hannon, J. P., Phys. Rev. Lett. 57 (1986), 1141.

    Article  ADS  Google Scholar 

  5. Chechin, A. I., Andronova, N. V., Zelepukhin, M. V., Artem'ev, A. N. and Stepanov, E. P., Pis'ma Zh. Exp. Teor. Fiz. 37 (1983), 531. [JETP Lett. 37 (1983), 633.]

    ADS  Google Scholar 

  6. Faigel, G., Siddons, D. P., Hastings, J. B., Haustein, P. E., Grover, J. R. and Berman, L. E., Phys. Rev. Lett. 61 (1988), 2794.

    Article  ADS  Google Scholar 

  7. Hastings, J. B., Siddons, D. P., van Bürck, U., Hollatz, R. and Bergmann, U., Phys. Rev. Lett. 66 (1991), 771.

    Article  ADS  Google Scholar 

  8. Margulies, S., Debrunner, P. and Frauenfelder, H., Nucl. Instr. Meth. 21 (1963), 217.

    Article  Google Scholar 

  9. Smirnov, G. V., Hyp. Interact. 123/124 (1999), 31.

    Article  Google Scholar 

  10. Shvyd'ko, Yu. V., Phys. Rev. B 59 (1999), 9132.

    Article  ADS  Google Scholar 

  11. Haas, M., Realo, E., Winkler, H., Meyer-Klaucke, W., Trautwein, A. X., Leupold, O. and Rüter, H. D., Phys. Rev. B 56 (1997), 14028.

    Google Scholar 

  12. Sturhahn, W. and Gerdau, E., Phys. Rev. B 49 (1994) 9285.

    Article  ADS  Google Scholar 

  13. Shvyd'ko, Yu. V., Hyp. Interact. 125 (2000), 173.

    Article  Google Scholar 

  14. Zhang, L., Stanek, J., Hafner, S. S., Ahsbahs, H., Grünsteudel, H. F., Metge, J. and Rüffer, R., American Mineralogist 84 (1999), 447.

    Google Scholar 

  15. Odeurs, J., Hoy, G. R., L'Abbé, C., Koops, G. E. J., Pattyn, H., Shakhmuratov, R. N., Coussement, R., Chiodini, N. and Paleari, A., Hyp. Interact. 139 (2002), 685.

    Article  Google Scholar 

  16. Odeurs, J., Coussement, R. and L'abbe, C., Phys. Rev. B 60 (1999), 7140.

    Article  ADS  Google Scholar 

  17. Kobayashi, H., Yoda, Y. and Kamimura, T., J. Phys. Soc. Jpn. 70 (2001), 1128.

    Article  Google Scholar 

  18. Röhlsberger, R., Bansmann, J., Senz, V., Jonas, K. L., Bettac, A., Meiwes-Broer, K. H. and Leupold, O., Phys. Rev. B 67 (2003), 245412.

    Article  ADS  Google Scholar 

  19. Smirnov, G. V., Hyp. Interact. 97/98 (1996), 551.

    Article  Google Scholar 

  20. van Bürck, U., Siddons, D. P., Hastings, J. B., Bergmann, U. and Hollatz, R., Phys. Rev. B 46 (1992), 6207.

    Article  ADS  Google Scholar 

  21. Shvyd'ko, Yu. V., van Bürck, U., Potzel, W., Schindelmann, P., Gerdau, E., Leupold, O., Metge, J., Rüter, H. D. and Smirnov, G. V., Phys. Rev. B 57 (1998), 3552.

    Article  ADS  Google Scholar 

  22. For the sake of simplicity, in this consideration, we negect the electronic absorption.

  23. Grünsteudel, H., Haas, M., Leupold, O., Mandon, D., Matzanke, B. F., Meyer-Klaucke, W., Paulsen, H., Realo, E., Rüter, H. D., Trautwein, A. X., Weiss, R. and Winkler, H., Inorg. Chem. Acta 275–276 (1998), 334.

    Article  Google Scholar 

  24. Sturhahn, W., J. Phys.: Cond. Mat. 16 (2004), S497.

    Article  ADS  Google Scholar 

  25. Asthalter, T., Franz, H., van Bürck, U., Messel, K., Schreier, E. and Dinnebier, R., J. Phys. Chem. Solids 64 (2003), 677.

    Article  ADS  Google Scholar 

  26. Wertheim, G. K., Mössbauer Effect. Principles and Applications, Academic Press, New York, London, 1964.

    Google Scholar 

  27. Rykov, A., Caignaert, V., Nguyen, N., Maignan, A., Suard, E. and Raveau, B., Physica C 205 (1993), 63.

    Article  ADS  Google Scholar 

  28. Rykov, A., Ducouret, A., Nguyen, N., Caignaert, V., Studer, F. and Raveau, B., Hyp. Interact. 77 (1993), 277.

    Article  Google Scholar 

  29. Rykov, A. I., Pavlukhin, Yu. T. and Medikov, A. A., Proc. Indian Natn. Sci. Acad. 55A(5) (1989), 721.

    Google Scholar 

  30. Sepelak, V., Tkacova, K. and Rykov, A. I., Cryst. Res. Technol. 28 (1993), 53.

    Google Scholar 

  31. Algarabel, P. A., Morellon, L., de Teresa, J. M., Blasco, J., Garcia, J., Ibarra, M. R., Hernandez, T., Plazaola, F. and Barandiaran, J. M., J. Magn. Magn. Mater. 226–230 (2001), 1089.

    Article  Google Scholar 

  32. Rykov, A. I., Nomura, K., Sawada, Ts., Mitsui, T., Seto, M., Tamegai, T. and Tokunaga, M., Phys. Rev. B 68 (2003), 224401.

    Article  ADS  Google Scholar 

  33. Nomura, K., Tokumitsu, K., Hayakawa, T. and Homonnay, Z., J. Radioanal. Nucl. Chem. 246 (2000), 69.

    Article  Google Scholar 

  34. Juhász, G., Homonnay, Z., Nomura, K., Hayakawa, T., Hamakawa, S. and Vértes, A., Solid St. Ionics 139 (2001), 219.

    Article  Google Scholar 

  35. Pokholok, K. V., Presnyakov, I. A., Ketsko, V. A., Oleinikov, N. N. and Kuznetsov, N. T., Russian J. Coordination Chem. 27 (2001), 632.

    Article  Google Scholar 

  36. Homonnay, Z., Nomura, K., Juhasz, G., Gal, M., Solymos, K., Hamakawa, S., Hayakawa, T. and Vertes, A., Chem. Mater. 14 (2002), 1127.

    Article  Google Scholar 

  37. Stevens, J. G. and Stevens, V. E., Mössbauer Effect Data Index Covering the 1975 Literature, IFI, Plenum Press, New York, Washington, London, 1976.

    Google Scholar 

  38. Klencsar, Z., MOSSWINN 3.0i, Budapest, 1995–2002.

  39. Shvyd'ko, Yu. V., Chumakov, A. I., Baron, A. Q. R., Gerdau, E., Ruffer, R., Bernhard, A. and Metge, J., Phys. Rev. B 54 (1996), 14942.

    Article  ADS  Google Scholar 

  40. Eibschütz, M., Shtrikman, S. and Treves, D., Phys. Rev. 156 (1967), 562.

    Article  ADS  Google Scholar 

  41. Marezio, M., Remeika, J. P. and Dernier, P. D., Acta Cryst. B 26 (1970), 2008.

    Article  Google Scholar 

  42. Kistner, O. C. and Sunyar, A. W., Phys. Rev. Lett. 8 (1960), 412.

    Article  ADS  Google Scholar 

  43. Xu, W. M., Naaman, O., Rozenberg, C. Kh., Pasternak, M. P. and Taylor, R. D., Phys. Rev. B 64 (2001), 094411.

    Article  ADS  Google Scholar 

  44. Pasternak, M. P., Rozenberg, G. Kh., Machavariani, G. Yu., Naaman, O., Taylor, R. D. and Jeanloz, R., Phys. Rev. Lett. 82 (1999), 4663.

    Article  ADS  Google Scholar 

  45. Lyubutin, I. S., Dmitrieva, T. V. and Stepin, A. S., JETP 88 (1999), 590.

    Article  ADS  Google Scholar 

  46. Rykov, A. I., In: S. Nasu and R. Coussement (eds), Nuclear Resonance with Synchrotron Radiation: Heterodyne Detection and Its Application to the Nano-Science (Proc. JSPS Belgium–Japan Binational Seminar), Osaka Univerity, Osaka, 2003.

    Google Scholar 

  47. Er-Rakho, L., Michel, C., Laccore, P. and Raveau, B., J. Solid St. Chem. 73 (1988), 531.

    Article  ADS  Google Scholar 

  48. Caignaert, V., Mirebau, I., Bouree, F., Nguyen, N., Ducouret, A., Greneche, J.-M. and Raveau, B., J. Solid St. Chem. 114 (1995), 24.

    Article  Google Scholar 

  49. Pissas, M., Kallias, G., Psycharis, V., Gamari-Seale, H., Niarchos, D., Simopoulos and Sonntag, R., Phys. Rev. B 55, 397.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Rykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rykov, A.I., Rykov, I.A., Nomura, K. et al. Frequency Spectra of Quantum Beats in Nuclear Forward Scattering of 57Fe: The Mössbauer Spectroscopy with Superior Energy Resolution. Hyperfine Interact 163, 29–56 (2005). https://doi.org/10.1007/s10751-004-4569-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-004-4569-1

Keywords

Navigation