Skip to main content

Advertisement

Log in

Influence of leaf miners and environmental quality on litter breakdown in tropical headwater streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Headwater streams subjected to anthropogenic impacts are prone to environmental quality decay, which may affect stream functioning. To investigate the effects of loss of environmental quality in stream functioning, we tested the hypothesis that leaf breakdown is faster in streams with higher environmental quality, and that invertebrate community structure and microbial biomass are negatively affected by habitat simplification resulting from environmental degradation. We submerged Alchornea glandulosa leaves in litter bags in nine streams, in Southern Brazil, in an environmental gradient. We characterized breakdown rates (k), physical in-stream characteristics, abundance of invertebrate taxa, and functional groups and microbial biomass for each stream, with three mesh exclusions (fine, medium, coarse). Breakdown was faster in the most preserved stream (k = − 0.032 ± 0.005) and decreased towards the most disturbed stream (k = − 0.0034 ± 0.001). Breakdown rates were positively associated with underwater habitat complexity, equitability of macroinvertebrate taxa, and abundance of Stenochironomus sp., which together explained 51% of breakdown rate variability. Breakdown rates from the less disturbed streams (n = 7, excluding urban-influenced) were lowest in medium-mesh, intermediate in fine-mesh, and highest in coarse-mesh bags, and the only taxon that differed according to this pattern was the mining-chironomid Stenochironomus sp., which suggests that this taxon had a significant activity of leaf processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abelho, M., 2001. From litter fall to breakdown in streams: a review. The Scientific World Journal 1: 656–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abelho, M., 2005. Extraction and quantification of ATP as a measure of microbial biomass. In Graça, A. S., F. Bärlocher & M. O. Gessner (eds), Methods to study litter decomposition: a practical guide, Amsterdã: 223–230.

  • Abelho, M., C. Cressa & M. A. S. Graça, 2005. Microbial biomass, respiration, and decomposition of Hura crepitans L. (Euphorbiaceae) leaves in a Tropical Stream. Biotropica 37: 397–402.

    Article  Google Scholar 

  • Aguiar, A. C. F., V. Neres-Lima & T. P. Moulton, 2018. Relationships of shredders, leaf processing and organic matter along a canopy cover gradient in tropical streams. Journal of Limnology 77: 109–120.

    Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Article  Google Scholar 

  • Alvim, E. A. C. C., A. O. Medeiros, R. S. Rezende & J. F. Gonçalves Jr., 2015. Leaf breakdown in a natural open tropical stream. Journal of Limnology 74: 248–260.

    Google Scholar 

  • Anderson, M. J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.

    Article  PubMed  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth.

    Google Scholar 

  • Andrade, C. M., V. Neres-Lima & T. P. Moulton, 2017. Differentiating the roles of shrimp and aquatic insects in leaf processing in a Neotropical stream. Marine and Freshwater Research 68: 1695–1703.

    Article  Google Scholar 

  • Baptista, D. F., D. F. Buss, L. G. Dias, J. L. Nessimian, E. R. Silva, A. H. A. Moraes Neto, S. N. Carvalho, M. A. Oliveira & L. R. Andrade, 2006. Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts. Annales de Limnologie 42: 87–96.

    Article  Google Scholar 

  • Bärlocher, F., J. E. Helson & D. D. Williams, 2010. Aquatic hyphomycete communities across a land-use gradient of Panamanian streams. Fundamental and Applied Limnology 177: 209–221.

    Article  Google Scholar 

  • Benfield, E. F., J. R. Webster, J. L. Tank & J. J. Hutchens, 2001. Long-term patterns in leaf breakdown in streams in response to watershed logging. International Reviews in Hydrobiology 86: 467–474.

    Article  Google Scholar 

  • Bengtsson, M. M., K. Wagner, N. R. Burns, E. R. Herberg, W. Wanek, L. A. Kaplan & T. J. Battin, 2015. No evidence of aquatic priming effects in hyporheic zone microcosms. Scientific Reports 4: 5187.

    Article  Google Scholar 

  • Boëchat, I. G., A. Krüger, A. Giani, C. C. Figueiredo & B. Gücker, 2011. Agricultural land-use affects the nutritional quality of stream microbial communities. Microbial Ecology 77: 568–576.

    Article  Google Scholar 

  • Bovill, W. D., B. J. Downes & P. S. Lake, 2020. A novel method reveals how channel retentiveness and stocks of detritus (CPOM) varu among streams differing in bed roughness. Freshwater Biology 65: 1313–1324.

    Article  Google Scholar 

  • Boyero, L., R. G. Pearson, D. Dudgeon, V. Ferreira, M. A. S. Graça, M. O. Gessner, A. J. Boulton, E. Chauvet, C. M. Yule, R. J. Albariño, et al., 2012. Global patterns of streams detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography 21: 134–141.

    Article  Google Scholar 

  • Boyero, L., R. G. Pearson, M. O. Gessner, D. Dudgeon, A. Ramírez, C. M. Yule, M. Callisto, C. M. Pringle, A. C. Encalada, M. Arunachalam, J. Mathooko, J. E. Helson, J. Rincón, A. Bruder, A. Cornejo, A. S. Flecker, C. Mathuriau, C. M’Erimba, J. F. Gonçalves Jr., M. Moretti & T. Jinggut, 2015. Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science 34: 759–769.

    Article  Google Scholar 

  • Bruder, A., M. H. Schindler, M. S. Moretti & M. O. Gessner, 2014. Litter decomposition in a temperate and a tropical stream: the effects of species mixing litter quality and shredders. Freshwater Biology 59: 438–449.

    Article  CAS  Google Scholar 

  • Camacho, R., L. Boyero, A. Cornejo, A. Ibáñez & R. G. Pearson, 2009. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41: 625–632.

    Article  Google Scholar 

  • Campos, J. B., M. B. Romagnolo & M. C. Souza, 2000. Structure, Composition and Spatial Distribution of tree species in a Remnant of the Semi-Deciduous Seasonal Alluvial Forest of the Upper Paraná River Floodplain. Brazilian Archives of Biology and Technology 43: 185–194.

    Article  Google Scholar 

  • Catalán, N., A. M. Kellerman, H. Peter, F. Carmona & L. J. Tranvik, 2015. Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnology & Oceanography 60: 159–168.

    Article  Google Scholar 

  • Cebrian, J. & J. Lartigue, 2004. Patterns of herbivory and decomposition in aquatic and terrestrial systems. Ecological Monographs 74: 237–259.

    Article  Google Scholar 

  • Chará-Serna, A. M., J. D. Chará, M. C. Zúñiga, R. G. Pearson & L. Boyero, 2012. Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie 48: 139–144.

    Article  Google Scholar 

  • Chará, J. D., T. Telfer Baird & L. Giraldo, 2017. A comparative study of leaf breakdown of tree native tree species in a slowly-flowing headwater stream in the Colombian Andes. International Review of Hydrobiology 92: 183–198.

    Article  Google Scholar 

  • Cheshire, K., L. Boyero & R. G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748–769.

    Article  Google Scholar 

  • Cionek, V. M., A. C. Beaumord & E. Benedito, 2011. Protocolo de avaliação rápida do ambiente para riachos inseridos na região do Arenito Caiuá – Noroeste do Paraná. EDUEM, Maringá.

    Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User manual/tutorial. PRIMER-E Ltd, Plymouth.

    Google Scholar 

  • Crenier, C., J. Arce-Funck, A. Bec, E. Billoir, F. Perrière, J. Leflaive & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology 62: 1155–1167.

    Article  CAS  Google Scholar 

  • Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.

    Article  PubMed  Google Scholar 

  • Dobson, M., 2004. Freshwater crabs in Africa. Freshwater Forum 21: 3–26.

    Google Scholar 

  • Dudgeon, D., 2008. Tropical Stream Ecology. Elsevier, London.

    Google Scholar 

  • Encalada, A. C., J. Calles, V. Ferreira, C. M. Canhoto & M. A. S. Graça, 2010. Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55: 1719–1733.

    Google Scholar 

  • Englert, D., J. P. Zubrod, R. Schulz & M. Bundschuh, 2015. Variability in ecosystem structure and functioning in a low order stream: implications of land use and season. Science of the Total Environment 538: 341–349.

    Article  CAS  Google Scholar 

  • Feckler, A., W. Goedkoop, M. Konschak, R. Bundschuh, K. G. J. Kenngott, R. Schulz, J. P. Zubrod & M. Bundschuh, 2017. History matters: heterotrophic microbial community structure and function adapt to multiple stressors. Global Change Biology 24: e402–e415.

    Article  PubMed  Google Scholar 

  • Feijó-Lima, R., S. M. Mcleay, E. F. Silva-Junior, F. Trombini, T. P. Moulton, E. Zandonà & S. A. Thomas, 2018. Quantitatively describing the downstream effects of an abrupt land cover transition: buffering effects of a forest remnant on a stream impacted by cattle grazing. Inland Waters 8: 294–311.

    Article  Google Scholar 

  • Feio, M. J., T. Alves, M. Boavida, A. Medeiros & M. A. S. Graça, 2010. Functional indicators of stream health: a river-basin approach. Freshwater Biology 55: 1050–1065.

    Article  Google Scholar 

  • Fernandes, L. A. & C. M. M. Ribeiro, 2015. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil). Journal of South American Earth Sciences 61: 71–90.

    Article  Google Scholar 

  • Ferreira, V., V. Gulis, C. Pascoal & M. A. S. Graça, 2014. Stream pollution and fungi. In Jones, E. B. G., K. D. Hyde & K. L. Pang (eds), Freshwater Fungi and Fungus-like Organisms, de Gruyter, Berlim: 388e412.

  • Ferreira, V., A. Larrañaga, V. Gulis, A. Basaguren, A. Elosegi, M. A. S. Graça & J. Pozo, 2015. The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. Forest Ecology and Management 335: 129–138.

    Article  Google Scholar 

  • Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.

    Article  Google Scholar 

  • Fiori, L., V. M. Cionek, P. A. Sacramento & E. Benedito, 2016. Dynamics of leaf fall from riparian vegetation and the accumulation in benthic stock in Neotropical Streams. Revista Árvore 40: 89–96.

    Article  Google Scholar 

  • Fonseca, A. L. S., I. Bianchini Jr., C. M. M. Pimenta, C. B. P. Soares & N. Mangiavacchi, 2013. The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia 703: 59–67.

    Article  Google Scholar 

  • Fochetti, R. & J. M. Tierno de Figueroa, 2008. Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Hydrobiologia 595: 365–377.

    Article  Google Scholar 

  • Gardeström, J., M. Ermold, W. Goedkoop & B. G. Mckie, 2016. Disturbance history influences stressor impacts: effects of a fungicide and nutrients on microbial diversity and litter decomposition. Freshwater Biology 61: 2171–2184.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hättenschwiler, 2010. Diversity meets decomposition. Trends in Ecology and Evolution 25: 372–380.

    Article  PubMed  Google Scholar 

  • Gonçalves Junior, J. F., J. S. França & M. Callisto, 2006. Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Brazilian Archives of Biology and Technology 49: 967–973.

    Article  Google Scholar 

  • Gonçalves, J. F., R. S. Rezende, J. França & M. Callisto, 2012. Invertebrate colonization during leaf processing of native, exotic and artificial detritus in a tropical stream. Marine and Freshwater Research 63: 428–439.

    Article  Google Scholar 

  • Gonino, G. M. R., B. R. S. Figueiredo, G. I. Manetta, G. H. Z. Alvez & E. Benedito, 2019. Fire increases the productivity of sugarcane, but it also generates ashes that negatively affect native fish species in aquatic systems. Science of the Total Environment 664: 215–221.

    Article  CAS  Google Scholar 

  • Halvorson, H. M., J. R. Barry, M. B. Lodato, R. H. Findlay, S. N. Francoeur & K. A. Kuehn, 2019. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Functional Ecology 33: 188–201.

    Article  PubMed  Google Scholar 

  • Hamada, N., J. L. Nessimian & R. B. Querino, 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus.

    Google Scholar 

  • Henderson, P. A. & L. Walker, 1986. On the leaf litter community of the Amazonian blackwater stream Tarumãzinho. Journal of Tropical Ecology 2: 1–17.

    Article  Google Scholar 

  • Henriques-Oliveira, A. L., J. L. Nessimian & L. F. M. Dorvillé, 2003. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology 63: 269–281.

    Article  CAS  Google Scholar 

  • Huang, W., X. Liu, W. Peng, W. Ma & J. Zhang, 2018. Quantitative response of leaf-litter decomposition rate to water abstraction in a gradient: implications for environmental flow management. Ecohydrology 11: e1919.

    Article  Google Scholar 

  • IAPAR—Instituto de Desenvolvimento Rural do Paraná, 2014. Precipitação da Estação Meteorológica de Paranavaí, Paraná, Brasil–2014. Available at: http://www.idrparana.pr.gov.br/Formulario/Pedidos-de-Orientacao-Tecnica-ou-Servicos, November 2014.

  • Imberger, S. J., C. J. Walsh & M. R. Grace, 2008. More microbial activity, not abrasive flow or shredder abundance, accelerates breakdown of labile litter in urban streams. Journal of the North American Benthological Society 27: 549–561.

    Article  Google Scholar 

  • Iñiguez-Armijos, C., S. Rausche, A. Cueva, A. Sánchez-Rodríguez, C. Espinosa & L. Breuer, 2016. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams. Ecology and Evolution 6: 4849–4865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iñiguez-Armijos, C., H. Hampel & L. Breuer, 2018. Land-use effects on structural and functional composition of benthic and leaf-associated macroinvertebrates in four Andean streams. Aquatic Ecology 52: 77–92.

    Article  Google Scholar 

  • Kindt, R. & R. Coe, 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi.

  • Kominoski, J. S., L. B. Marczak & J. S. Richardson, 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology 92: 151–159.

    Article  PubMed  Google Scholar 

  • Kühmayer, T., F. Guo, N. Ebm, T. J. Battin, M. T. Brett, S. E. Bunn & M. J. Kainz, 2020. Preferential retention of algal carbon in benthic invertebrates: stable isotope and fatty acid evidence from an outdoor flume experiment. Freshwater Biology 65: 1200–1209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov, Y., 2010. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry 42: 1363–1371.

    Article  CAS  Google Scholar 

  • Lacerf, A. & E. Chauvet, 2008. Diversity and functions of leaf-decaying fungi in human-altered streams. Freshwater Biology 53: 1658–1672.

    Article  Google Scholar 

  • Lamberti, G. A., D. T. Chaloner & A. E. Hershey, 2010. Linkages among aquatic ecosystems. Journal of the North American Benthological Society 29: 245–263.

    Article  Google Scholar 

  • Leite-Rossi, L. A., H. H. L. Saulino, E. M. Shimabukuro, M. B. Cunha-Santino & S. Trivinho-Strixino, 2019. Shredder Chironomid diets are influenced by decomposition rates of different leaf litter species. Neotropical Entomology 48: 38–49.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, M. P., R. T. Martins, L. S. Silveira & R. G. Alves, 2015. The leaf breakdown of Picramnia sellowii (Picramniales: Picramniaceae) as index of anthropogenic disturbances in tropical streams. Brazilian Journal of Biology 75: 846–853.

    Article  CAS  Google Scholar 

  • Magliozzi, C., R. C. Grabowski, A. I. Packman & S. Krause, 2018. Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrology and Earth System Sciences 22: 6163–6185.

    Article  Google Scholar 

  • Martins, R. T., A. S. Melo, J. F. Gonçalves Junior & N. Hamada, 2015. Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science 34: 716–726.

    Article  Google Scholar 

  • Martins, R. T., R. S. Rezende, J. F. Gonçalves Júnior, A. Lopes, M. T. F. Piedade, H. L. Cavalcante & N. Hamada, 2017. Effects of increasing temperature and CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems. PLoS ONE 12: e0188791.

    Article  PubMed  PubMed Central  Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Article  Google Scholar 

  • Medeiros, A. O., M. Callisto, M. S. Graça, V. Ferreira, C. A. Rosa, J. França, A. Eller, R. S. Rezende & J. F. Gonçalves Jr., 2015. Microbial colonization and litter decomposition in a Cerrado stream are limited by low dissolved nutrient concentrations. Limnetica 34: 283–292.

    Google Scholar 

  • Manning, D. W. P., A. D. Rosemond, V. Gulis, J. P. Benstead & J. S. Kominoski, 2018. Nutrients and temperature additively increase stream microbial respiration. Global Change Biology 24: e233–e247.

    Article  PubMed  Google Scholar 

  • Merrit, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.

    Google Scholar 

  • Mlambo, M. C., R. Paavola, H. Fritze, P. Louhi & T. Muotka, 2019. Leaf litter decomposition and decomposer communities in streams affected by intensive forest biomass removal. Ecological Indicators 101: 364–372.

    Article  Google Scholar 

  • Mollá, S., J. J. Casas, M. Menéndez, A. Basaguren, C. Casado, E. Descals, J. M. González, A. Larrañaga, M. Lusi, A. Martínez, C. Mendonza-Lera, O. Moya, J. Pérez, T. Riera, N. Roblas & J. Pozo, 2017. Leaf-breakdown as an indicator of the impacts by flow regulation in headwater streams: responses across climatic regions. Ecological Indicator 73: 11–22.

    Article  Google Scholar 

  • Mora-Gómez, J., S. Duarte, F. Cássio, C. Pascoal & A. M. Romaní, 2018. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Science of the Total Environment 621: 486–496.

    Article  Google Scholar 

  • Moulton, T. P., S. Magalhães-Fraga, E. Brito & F. Barbosa, 2010. Macroconsumers are more important than specialist macroinvertebrates shredders in leaf processing in urban streams of Rio de Janeiro, Brazil. Hydrobiologia 638: 55–66.

    Article  Google Scholar 

  • Moulton, T. P., C. M. Andrade & V. Neres-Lima, 2019. The outcome of an exclusion experiment depends on the method: shrimps, shredders and leaf breakdown in a tropical stream. Freshwater Science 38: 131–141.

    Article  Google Scholar 

  • Mugnai, R., J. L. Nessimian & D. Fernandes, 2010. Manual de Identificação de Macroinvertebrados. Technical Books, Rio de Janeiro.

    Google Scholar 

  • Nitsche, P.R., P. H. Caramori, W. S. Ricce & L. F. D. Pinto, 2019. Atlas Climático do Estado do Paraná. Instituto Agronômico do Paraná – IAPAR, Londrina.

  • Niyogi, D. K., K. S. Simon & C. R. Townsend, 2003. Breakdown of tussock grass in streams along a gradient of agricultural development in New Zealand. Freshwater Biology 48: 1698–1708.

    Article  Google Scholar 

  • Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs & H. Wagner, 2019. Vegan: Community Ecology Package. R package version 2.5-5. http://CRAN.R-project.org/package=vegan

  • Paul, M. J., J. L. Meyer & C. A. Couch, 2006. Leaf breakdown in streams differing in catchment land use. Freshwater Biology 51: 1684–1695.

    Article  Google Scholar 

  • Pazianoto, L. H. R., A. Solla & V. Ferreira, 2019. Leaf litter decomposition of sweet chestnut is affected more by oomycte infection of trees than by water temperature. Fungal Ecology 41: 269–278.

    Article  Google Scholar 

  • Piscart, C., R. Genoel, S. Doledec, E. Chauvet & P. Marmonier, 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org/.

  • Ramamonjisoa, N. & Y. Natuhara, 2018. Contrasting effects of functionally distinct tadpole species on nutrient cycling and litter breakdown in a tropical rainforest stream. Freshwater Biology 63: 202–213.

    Article  CAS  Google Scholar 

  • Rezende, R. S., M. A. S. Graça, A. M. Santos, A. O. Medeiros, P. F. Santos, Y. R. Nunes & J. F. Gonçalves Júnior, 2016. Organic matter dynamics in a tropical forest in a grassland landscape. Biotropica 48: 301–310.

    Article  Google Scholar 

  • Rezende, R. S., G. F. M. Leite, K. Ramos, I. Torres, A. M. Tonin & J. F. Gonçalves Jr., 2018. Effects of litter size and quality on processing by decomposers in a tropical savannah stream. Biotropica 50: 578–585.

    Article  Google Scholar 

  • Richardson, J. S., C. R. Shaughnessy & P. G. Harrison, 2004. Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Archiv für Hydrobiologie 159: 309–325.

    Article  Google Scholar 

  • Rodrigues, R. R. & A. G. Nave, 2001. Heterogeneidade florística das Matas Ciliares. In Rodrigues, R. R. & H. F. Leitão-Filho (eds), Matas Ciliares: conservação e recuperação. FAPESP, São Paulo: 45–71.

    Google Scholar 

  • Sales, M. A., J. F. Gonçalves Jr., J. S. Dahora & A. O. Medeiros, 2014. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecology 69: 84–94.

    Article  PubMed  Google Scholar 

  • Shah, J. J. F., J. S. Kominoski, M. Ardón, W. K. Dodds, M. O. Gessner, N. A. Griffiths, C. P. Hawkins, S. L. Johnson, A. Lecerf, C. J. LeRoy, D. W. P. Manning, A. D. Rosemond, R. L. Sinsabaugh, C. M. Swan, J. R. Webster & L. H. Zeglin, 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23: 3064–3075.

    Article  Google Scholar 

  • Shaw, E. A. & J. S. Richardson, 2001. Direct and indirect effects of sediment pulse duration on stream invertebrate assemblages and rainbow trout (Oncorhynchus mykiss) growth and survival. Canadian Journal of Fisheries and Aquatic Sciences 58: 2213–2221.

    Article  Google Scholar 

  • Silva-Junior, E. F., T. P. Moulton, I. G. Boëchat & B. Gücker, 2014. Leaf decomposition and ecosystem metabolism as functional indicators of land use impacts on tropical streams. Ecological Indicators 36: 195–204.

    Article  CAS  Google Scholar 

  • Spänhoff, B., C. Augspurger & K. Küsel, 2007. Comparing field and laboratory breakdown rates of coarse particulate organic matter: sediment dynamics mask the impacts of dissolved nutrients on CPOM mass loss in streams. Aquatic Sciences 69: 495–502.

    Article  Google Scholar 

  • Stoker, D., A. J. Falkner, K. M. Murray, A. K. Lang, T. R. Barnum, J. Hepinstall-Cymerman, M. J. Conroy, R. J. Cooper & C. M. Pringle, 2017. Decomposition of terrestrial resource subsidies in headwater streams: does consumer diversity matter? Ecosphere 8: e01868.

    Article  Google Scholar 

  • Suren, A. M. & I. G. Jowett, 2001. Effects of deposited sediment on invertebrate drift: an experimental study. New Zealand Journal of Marine and Freshwater Research 35: 725–737.

    Article  Google Scholar 

  • Tagliaferro, M., A. Giorgi, A. Torremorell & R. Albariño, 2019. Urbanisation reduces litter breakdown rates and affects benthic invertebrate structure in Pampean streams. International Review of Hydrobiology 105: 33–43.

    Article  Google Scholar 

  • Tanaka, M. O., J. F. Fernandes, C. M. Suga, F. Y. Hanai & A. L. T. Souza, 2015. Abrupt change of a stream ecosystem function along a sugarcane-forest transition: integrating riparian and in-stream characteristics. Agriculture, Ecosystems and Environment 207: 171–177.

    Article  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Article  Google Scholar 

  • Taylor, J. M., R. E. Lizotte Jr. & S. Testa III, 2019. Breakdown rates and associated nutrient cycling vary between novel crop-derived and natural riparian detritus in aquatic agroecosystems. Hydrobiologia 827: 211–224.

    Article  CAS  Google Scholar 

  • Tiegs, S. D., D. M. Costello, M. W. Isken, G. Woodward, P. B. McIntyre, M. O. Gessner, E. Chauvet, N. A. Griffiths, A. S. Flecker, V. Acuña, et al., 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances 5: eaav0486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomanova, S., E. Goitia & J. Helesic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams. Hydrobiologia 556: 251–264.

    Article  Google Scholar 

  • Vasconcelos, M. C. & A. S. Melo, 2008. An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream. Hydrobiologia 610: 321–329.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96: 1213–1228.

    Article  PubMed  Google Scholar 

  • Ward, J., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Article  Google Scholar 

  • Webster, J. R. & J. L. Meyer, 1997. Organic matter budgets for streams: a synthesis. Stream Organic Matter Budgets. Journal of the North American Benthological Society 16: 141–161.

    Article  Google Scholar 

  • Wohlgemuth, D., M. Solan & J. A. Godbold, 2016. Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Scientific Reports 6: 39325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt, K. H. & M. R. Turetsky, 2015. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. Journal of Ecology 103: 1165–1171.

    Article  CAS  Google Scholar 

  • Yeung, A. C. Y., J. L. Musetta-Lambert, D. P. Kreutzweiser, P. K. Sibley & J. S. Richardson, 2018. Relations of interannual differences in stream litter breakdown with discharge: bioassessment implications. Ecosphere 9: e02423.

    Article  Google Scholar 

  • Yule, C. M., M. Y. Leong, K. C. Liew, L. Ratnarajah, K. Schmidt, H. M. Wong, R. G. Pearson & L. Boyero, 2009. Shredders in Malaysia: abundance and species richness are higher in highland, temperate-like, tropical streams. Journal of the North American Benthological Society 28: 404–415.

    Article  Google Scholar 

  • Zeni, J. O. & L. Casatti, 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726: 259–270.

    Article  Google Scholar 

  • Zúñiga-Céspedes, B., M. C. Zúñiga & J. Chará, 2018. The effect of macroinvertebrate exclusion on leaf breakdown rates in two upland Colombian streams. Revista de Biologia Tropical 66: 457–467.

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Ecologia Energética Laboratory for assistance with data collection and discussion. We also thank Gustavo Henrique Zaia Alves and Patricia Almeida Sacramento for reviews of an earlier draft of this paper, Jorge Luiz Rodrigues Filho and Vinicius Neres-Lima for the assistance with statistics, and Paulo Buosi (in memoriam) for assistance with field work. This work was supported by a PhD grant no 140577/2012-2 to VMC, by a Project grant no 475256/2012-3, and by PROEX—PEA funding, all from the National Council for Scientific and Technological Development—CNPq.

Funding

This work was supported by a PhD grant no 140577/2012-2 to VMC, by a Project grant no 475256/2012-3, and by PROEX—PEA funding, all from the National Council for Scientific and Technological Development—CNPq.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: VMC and EBB; TMM; data collection: VMC, FNOF, LHP, and GOL; analysis and interpretation of results: VMC and TMM; FNOF, LHP; and draft manuscript preparation and critical revision: VMC and TMM; FNOF, LHP, EB, and GOL

Corresponding author

Correspondence to Vivian de Mello Cionek.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Consent for publication

All authors reviewed the results and approved the final version of the manuscript.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2021_4529_MOESM1_ESM.jpg

Fig. S1 Litter bags filled with Alchornea glandulosa leaf packs within the 3-exclusion mesh treatment. Coarse-mesh: 10 mm; Medium-mesh: 2 mm; Fine-mesh: 0.2 mm. Supplementary material 1 (JPG 689 kb)

10750_2021_4529_MOESM2_ESM.tiff

Fig. S2 Invertebrate taxonomic differences among streams. A = fine-mesh, B = Medium-mesh, C = coarse-mesh. Supplementary material 2 (TIFF 11294 kb)

10750_2021_4529_MOESM3_ESM.tiff

Fig. S3 Invertebrate functional differences among streams. A = fine-mesh, B = Medium-mesh, C = coarse-mesh. Supplementary material 3 (TIFF 11294 kb)

10750_2021_4529_MOESM4_ESM.jpg

Microbial biomass (ATP) among mesh exclusion treatments (fine, medium and coarse) in each stream separately along the processing period. F = fine-mesh, M = medium-mesh, C = coarse-mesh. Supplementary material 4 (JPG 228 kb)

Supplementary material 5 (JPG 262 kb)

Supplementary material 6 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello Cionek, V., Fogaça, F.N.O., Moulton, T.P. et al. Influence of leaf miners and environmental quality on litter breakdown in tropical headwater streams. Hydrobiologia 848, 1311–1331 (2021). https://doi.org/10.1007/s10750-021-04529-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04529-6

Keywords

Navigation