Influence of leaf miners and environmental quality on litter breakdown in tropical headwater streams

Abstract

Headwater streams subjected to anthropogenic impacts are prone to environmental quality decay, which may affect stream functioning. To investigate the effects of loss of environmental quality in stream functioning, we tested the hypothesis that leaf breakdown is faster in streams with higher environmental quality, and that invertebrate community structure and microbial biomass are negatively affected by habitat simplification resulting from environmental degradation. We submerged Alchornea glandulosa leaves in litter bags in nine streams, in Southern Brazil, in an environmental gradient. We characterized breakdown rates (k), physical in-stream characteristics, abundance of invertebrate taxa, and functional groups and microbial biomass for each stream, with three mesh exclusions (fine, medium, coarse). Breakdown was faster in the most preserved stream (k = − 0.032 ± 0.005) and decreased towards the most disturbed stream (k = − 0.0034 ± 0.001). Breakdown rates were positively associated with underwater habitat complexity, equitability of macroinvertebrate taxa, and abundance of Stenochironomus sp., which together explained 51% of breakdown rate variability. Breakdown rates from the less disturbed streams (n = 7, excluding urban-influenced) were lowest in medium-mesh, intermediate in fine-mesh, and highest in coarse-mesh bags, and the only taxon that differed according to this pattern was the mining-chironomid Stenochironomus sp., which suggests that this taxon had a significant activity of leaf processing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abelho, M., 2001. From litter fall to breakdown in streams: a review. The Scientific World Journal 1: 656–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abelho, M., 2005. Extraction and quantification of ATP as a measure of microbial biomass. In Graça, A. S., F. Bärlocher & M. O. Gessner (eds), Methods to study litter decomposition: a practical guide, Amsterdã: 223–230.

  3. Abelho, M., C. Cressa & M. A. S. Graça, 2005. Microbial biomass, respiration, and decomposition of Hura crepitans L. (Euphorbiaceae) leaves in a Tropical Stream. Biotropica 37: 397–402.

    Google Scholar 

  4. Aguiar, A. C. F., V. Neres-Lima & T. P. Moulton, 2018. Relationships of shredders, leaf processing and organic matter along a canopy cover gradient in tropical streams. Journal of Limnology 77: 109–120.

    Google Scholar 

  5. Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Google Scholar 

  6. Alvim, E. A. C. C., A. O. Medeiros, R. S. Rezende & J. F. Gonçalves Jr., 2015. Leaf breakdown in a natural open tropical stream. Journal of Limnology 74: 248–260.

    Google Scholar 

  7. Anderson, M. J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62: 245–253.

    PubMed  Google Scholar 

  8. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth.

    Google Scholar 

  9. Andrade, C. M., V. Neres-Lima & T. P. Moulton, 2017. Differentiating the roles of shrimp and aquatic insects in leaf processing in a Neotropical stream. Marine and Freshwater Research 68: 1695–1703.

    Google Scholar 

  10. Baptista, D. F., D. F. Buss, L. G. Dias, J. L. Nessimian, E. R. Silva, A. H. A. Moraes Neto, S. N. Carvalho, M. A. Oliveira & L. R. Andrade, 2006. Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts. Annales de Limnologie 42: 87–96.

    Google Scholar 

  11. Bärlocher, F., J. E. Helson & D. D. Williams, 2010. Aquatic hyphomycete communities across a land-use gradient of Panamanian streams. Fundamental and Applied Limnology 177: 209–221.

    Google Scholar 

  12. Benfield, E. F., J. R. Webster, J. L. Tank & J. J. Hutchens, 2001. Long-term patterns in leaf breakdown in streams in response to watershed logging. International Reviews in Hydrobiology 86: 467–474.

    Google Scholar 

  13. Bengtsson, M. M., K. Wagner, N. R. Burns, E. R. Herberg, W. Wanek, L. A. Kaplan & T. J. Battin, 2015. No evidence of aquatic priming effects in hyporheic zone microcosms. Scientific Reports 4: 5187.

    Google Scholar 

  14. Boëchat, I. G., A. Krüger, A. Giani, C. C. Figueiredo & B. Gücker, 2011. Agricultural land-use affects the nutritional quality of stream microbial communities. Microbial Ecology 77: 568–576.

    Google Scholar 

  15. Bovill, W. D., B. J. Downes & P. S. Lake, 2020. A novel method reveals how channel retentiveness and stocks of detritus (CPOM) varu among streams differing in bed roughness. Freshwater Biology 65: 1313–1324.

    Google Scholar 

  16. Boyero, L., R. G. Pearson, D. Dudgeon, V. Ferreira, M. A. S. Graça, M. O. Gessner, A. J. Boulton, E. Chauvet, C. M. Yule, R. J. Albariño, et al., 2012. Global patterns of streams detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography 21: 134–141.

    Google Scholar 

  17. Boyero, L., R. G. Pearson, M. O. Gessner, D. Dudgeon, A. Ramírez, C. M. Yule, M. Callisto, C. M. Pringle, A. C. Encalada, M. Arunachalam, J. Mathooko, J. E. Helson, J. Rincón, A. Bruder, A. Cornejo, A. S. Flecker, C. Mathuriau, C. M’Erimba, J. F. Gonçalves Jr., M. Moretti & T. Jinggut, 2015. Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science 34: 759–769.

    Google Scholar 

  18. Bruder, A., M. H. Schindler, M. S. Moretti & M. O. Gessner, 2014. Litter decomposition in a temperate and a tropical stream: the effects of species mixing litter quality and shredders. Freshwater Biology 59: 438–449.

    CAS  Google Scholar 

  19. Camacho, R., L. Boyero, A. Cornejo, A. Ibáñez & R. G. Pearson, 2009. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41: 625–632.

    Google Scholar 

  20. Campos, J. B., M. B. Romagnolo & M. C. Souza, 2000. Structure, Composition and Spatial Distribution of tree species in a Remnant of the Semi-Deciduous Seasonal Alluvial Forest of the Upper Paraná River Floodplain. Brazilian Archives of Biology and Technology 43: 185–194.

    Google Scholar 

  21. Catalán, N., A. M. Kellerman, H. Peter, F. Carmona & L. J. Tranvik, 2015. Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnology & Oceanography 60: 159–168.

    Google Scholar 

  22. Cebrian, J. & J. Lartigue, 2004. Patterns of herbivory and decomposition in aquatic and terrestrial systems. Ecological Monographs 74: 237–259.

    Google Scholar 

  23. Chará-Serna, A. M., J. D. Chará, M. C. Zúñiga, R. G. Pearson & L. Boyero, 2012. Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie 48: 139–144.

    Google Scholar 

  24. Chará, J. D., T. Telfer Baird & L. Giraldo, 2017. A comparative study of leaf breakdown of tree native tree species in a slowly-flowing headwater stream in the Colombian Andes. International Review of Hydrobiology 92: 183–198.

    Google Scholar 

  25. Cheshire, K., L. Boyero & R. G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748–769.

    Google Scholar 

  26. Cionek, V. M., A. C. Beaumord & E. Benedito, 2011. Protocolo de avaliação rápida do ambiente para riachos inseridos na região do Arenito Caiuá – Noroeste do Paraná. EDUEM, Maringá.

    Google Scholar 

  27. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User manual/tutorial. PRIMER-E Ltd, Plymouth.

    Google Scholar 

  28. Crenier, C., J. Arce-Funck, A. Bec, E. Billoir, F. Perrière, J. Leflaive & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology 62: 1155–1167.

    CAS  Google Scholar 

  29. Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.

    PubMed  Google Scholar 

  30. Dobson, M., 2004. Freshwater crabs in Africa. Freshwater Forum 21: 3–26.

    Google Scholar 

  31. Dudgeon, D., 2008. Tropical Stream Ecology. Elsevier, London.

    Google Scholar 

  32. Encalada, A. C., J. Calles, V. Ferreira, C. M. Canhoto & M. A. S. Graça, 2010. Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55: 1719–1733.

    Google Scholar 

  33. Englert, D., J. P. Zubrod, R. Schulz & M. Bundschuh, 2015. Variability in ecosystem structure and functioning in a low order stream: implications of land use and season. Science of the Total Environment 538: 341–349.

    CAS  Google Scholar 

  34. Feckler, A., W. Goedkoop, M. Konschak, R. Bundschuh, K. G. J. Kenngott, R. Schulz, J. P. Zubrod & M. Bundschuh, 2017. History matters: heterotrophic microbial community structure and function adapt to multiple stressors. Global Change Biology 24: e402–e415.

    PubMed  Google Scholar 

  35. Feijó-Lima, R., S. M. Mcleay, E. F. Silva-Junior, F. Trombini, T. P. Moulton, E. Zandonà & S. A. Thomas, 2018. Quantitatively describing the downstream effects of an abrupt land cover transition: buffering effects of a forest remnant on a stream impacted by cattle grazing. Inland Waters 8: 294–311.

    Google Scholar 

  36. Feio, M. J., T. Alves, M. Boavida, A. Medeiros & M. A. S. Graça, 2010. Functional indicators of stream health: a river-basin approach. Freshwater Biology 55: 1050–1065.

    Google Scholar 

  37. Fernandes, L. A. & C. M. M. Ribeiro, 2015. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil). Journal of South American Earth Sciences 61: 71–90.

    Google Scholar 

  38. Ferreira, V., V. Gulis, C. Pascoal & M. A. S. Graça, 2014. Stream pollution and fungi. In Jones, E. B. G., K. D. Hyde & K. L. Pang (eds), Freshwater Fungi and Fungus-like Organisms, de Gruyter, Berlim: 388e412.

  39. Ferreira, V., A. Larrañaga, V. Gulis, A. Basaguren, A. Elosegi, M. A. S. Graça & J. Pozo, 2015. The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. Forest Ecology and Management 335: 129–138.

    Google Scholar 

  40. Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.

    Google Scholar 

  41. Fiori, L., V. M. Cionek, P. A. Sacramento & E. Benedito, 2016. Dynamics of leaf fall from riparian vegetation and the accumulation in benthic stock in Neotropical Streams. Revista Árvore 40: 89–96.

    Google Scholar 

  42. Fonseca, A. L. S., I. Bianchini Jr., C. M. M. Pimenta, C. B. P. Soares & N. Mangiavacchi, 2013. The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia 703: 59–67.

    Google Scholar 

  43. Fochetti, R. & J. M. Tierno de Figueroa, 2008. Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Hydrobiologia 595: 365–377.

    Google Scholar 

  44. Gardeström, J., M. Ermold, W. Goedkoop & B. G. Mckie, 2016. Disturbance history influences stressor impacts: effects of a fungicide and nutrients on microbial diversity and litter decomposition. Freshwater Biology 61: 2171–2184.

    Google Scholar 

  45. Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Google Scholar 

  46. Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hättenschwiler, 2010. Diversity meets decomposition. Trends in Ecology and Evolution 25: 372–380.

    PubMed  Google Scholar 

  47. Gonçalves Junior, J. F., J. S. França & M. Callisto, 2006. Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Brazilian Archives of Biology and Technology 49: 967–973.

    Google Scholar 

  48. Gonçalves, J. F., R. S. Rezende, J. França & M. Callisto, 2012. Invertebrate colonization during leaf processing of native, exotic and artificial detritus in a tropical stream. Marine and Freshwater Research 63: 428–439.

    Google Scholar 

  49. Gonino, G. M. R., B. R. S. Figueiredo, G. I. Manetta, G. H. Z. Alvez & E. Benedito, 2019. Fire increases the productivity of sugarcane, but it also generates ashes that negatively affect native fish species in aquatic systems. Science of the Total Environment 664: 215–221.

    CAS  Google Scholar 

  50. Halvorson, H. M., J. R. Barry, M. B. Lodato, R. H. Findlay, S. N. Francoeur & K. A. Kuehn, 2019. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Functional Ecology 33: 188–201.

    PubMed  Google Scholar 

  51. Hamada, N., J. L. Nessimian & R. B. Querino, 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus.

    Google Scholar 

  52. Henderson, P. A. & L. Walker, 1986. On the leaf litter community of the Amazonian blackwater stream Tarumãzinho. Journal of Tropical Ecology 2: 1–17.

    Google Scholar 

  53. Henriques-Oliveira, A. L., J. L. Nessimian & L. F. M. Dorvillé, 2003. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology 63: 269–281.

    CAS  Google Scholar 

  54. Huang, W., X. Liu, W. Peng, W. Ma & J. Zhang, 2018. Quantitative response of leaf-litter decomposition rate to water abstraction in a gradient: implications for environmental flow management. Ecohydrology 11: e1919.

    Google Scholar 

  55. IAPAR—Instituto de Desenvolvimento Rural do Paraná, 2014. Precipitação da Estação Meteorológica de Paranavaí, Paraná, Brasil–2014. Available at: http://www.idrparana.pr.gov.br/Formulario/Pedidos-de-Orientacao-Tecnica-ou-Servicos, November 2014.

  56. Imberger, S. J., C. J. Walsh & M. R. Grace, 2008. More microbial activity, not abrasive flow or shredder abundance, accelerates breakdown of labile litter in urban streams. Journal of the North American Benthological Society 27: 549–561.

    Google Scholar 

  57. Iñiguez-Armijos, C., S. Rausche, A. Cueva, A. Sánchez-Rodríguez, C. Espinosa & L. Breuer, 2016. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams. Ecology and Evolution 6: 4849–4865.

    PubMed  PubMed Central  Google Scholar 

  58. Iñiguez-Armijos, C., H. Hampel & L. Breuer, 2018. Land-use effects on structural and functional composition of benthic and leaf-associated macroinvertebrates in four Andean streams. Aquatic Ecology 52: 77–92.

    Google Scholar 

  59. Kindt, R. & R. Coe, 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi.

  60. Kominoski, J. S., L. B. Marczak & J. S. Richardson, 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology 92: 151–159.

    PubMed  Google Scholar 

  61. Kühmayer, T., F. Guo, N. Ebm, T. J. Battin, M. T. Brett, S. E. Bunn & M. J. Kainz, 2020. Preferential retention of algal carbon in benthic invertebrates: stable isotope and fatty acid evidence from an outdoor flume experiment. Freshwater Biology 65: 1200–1209.

    PubMed  PubMed Central  Google Scholar 

  62. Kuzyakov, Y., 2010. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry 42: 1363–1371.

    CAS  Google Scholar 

  63. Lacerf, A. & E. Chauvet, 2008. Diversity and functions of leaf-decaying fungi in human-altered streams. Freshwater Biology 53: 1658–1672.

    Google Scholar 

  64. Lamberti, G. A., D. T. Chaloner & A. E. Hershey, 2010. Linkages among aquatic ecosystems. Journal of the North American Benthological Society 29: 245–263.

    Google Scholar 

  65. Leite-Rossi, L. A., H. H. L. Saulino, E. M. Shimabukuro, M. B. Cunha-Santino & S. Trivinho-Strixino, 2019. Shredder Chironomid diets are influenced by decomposition rates of different leaf litter species. Neotropical Entomology 48: 38–49.

    CAS  PubMed  Google Scholar 

  66. Lopes, M. P., R. T. Martins, L. S. Silveira & R. G. Alves, 2015. The leaf breakdown of Picramnia sellowii (Picramniales: Picramniaceae) as index of anthropogenic disturbances in tropical streams. Brazilian Journal of Biology 75: 846–853.

    CAS  Google Scholar 

  67. Magliozzi, C., R. C. Grabowski, A. I. Packman & S. Krause, 2018. Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrology and Earth System Sciences 22: 6163–6185.

    Google Scholar 

  68. Martins, R. T., A. S. Melo, J. F. Gonçalves Junior & N. Hamada, 2015. Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science 34: 716–726.

    Google Scholar 

  69. Martins, R. T., R. S. Rezende, J. F. Gonçalves Júnior, A. Lopes, M. T. F. Piedade, H. L. Cavalcante & N. Hamada, 2017. Effects of increasing temperature and CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems. PLoS ONE 12: e0188791.

    PubMed  PubMed Central  Google Scholar 

  70. McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Google Scholar 

  71. Medeiros, A. O., M. Callisto, M. S. Graça, V. Ferreira, C. A. Rosa, J. França, A. Eller, R. S. Rezende & J. F. Gonçalves Jr., 2015. Microbial colonization and litter decomposition in a Cerrado stream are limited by low dissolved nutrient concentrations. Limnetica 34: 283–292.

    Google Scholar 

  72. Manning, D. W. P., A. D. Rosemond, V. Gulis, J. P. Benstead & J. S. Kominoski, 2018. Nutrients and temperature additively increase stream microbial respiration. Global Change Biology 24: e233–e247.

    PubMed  Google Scholar 

  73. Merrit, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.

    Google Scholar 

  74. Mlambo, M. C., R. Paavola, H. Fritze, P. Louhi & T. Muotka, 2019. Leaf litter decomposition and decomposer communities in streams affected by intensive forest biomass removal. Ecological Indicators 101: 364–372.

    Google Scholar 

  75. Mollá, S., J. J. Casas, M. Menéndez, A. Basaguren, C. Casado, E. Descals, J. M. González, A. Larrañaga, M. Lusi, A. Martínez, C. Mendonza-Lera, O. Moya, J. Pérez, T. Riera, N. Roblas & J. Pozo, 2017. Leaf-breakdown as an indicator of the impacts by flow regulation in headwater streams: responses across climatic regions. Ecological Indicator 73: 11–22.

    Google Scholar 

  76. Mora-Gómez, J., S. Duarte, F. Cássio, C. Pascoal & A. M. Romaní, 2018. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Science of the Total Environment 621: 486–496.

    Google Scholar 

  77. Moulton, T. P., S. Magalhães-Fraga, E. Brito & F. Barbosa, 2010. Macroconsumers are more important than specialist macroinvertebrates shredders in leaf processing in urban streams of Rio de Janeiro, Brazil. Hydrobiologia 638: 55–66.

    Google Scholar 

  78. Moulton, T. P., C. M. Andrade & V. Neres-Lima, 2019. The outcome of an exclusion experiment depends on the method: shrimps, shredders and leaf breakdown in a tropical stream. Freshwater Science 38: 131–141.

    Google Scholar 

  79. Mugnai, R., J. L. Nessimian & D. Fernandes, 2010. Manual de Identificação de Macroinvertebrados. Technical Books, Rio de Janeiro.

    Google Scholar 

  80. Nitsche, P.R., P. H. Caramori, W. S. Ricce & L. F. D. Pinto, 2019. Atlas Climático do Estado do Paraná. Instituto Agronômico do Paraná – IAPAR, Londrina.

  81. Niyogi, D. K., K. S. Simon & C. R. Townsend, 2003. Breakdown of tussock grass in streams along a gradient of agricultural development in New Zealand. Freshwater Biology 48: 1698–1708.

    Google Scholar 

  82. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs & H. Wagner, 2019. Vegan: Community Ecology Package. R package version 2.5-5. http://CRAN.R-project.org/package=vegan

  83. Paul, M. J., J. L. Meyer & C. A. Couch, 2006. Leaf breakdown in streams differing in catchment land use. Freshwater Biology 51: 1684–1695.

    Google Scholar 

  84. Pazianoto, L. H. R., A. Solla & V. Ferreira, 2019. Leaf litter decomposition of sweet chestnut is affected more by oomycte infection of trees than by water temperature. Fungal Ecology 41: 269–278.

    Google Scholar 

  85. Piscart, C., R. Genoel, S. Doledec, E. Chauvet & P. Marmonier, 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environmental Pollution 157: 1011–1018.

    CAS  PubMed  Google Scholar 

  86. R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org/.

  87. Ramamonjisoa, N. & Y. Natuhara, 2018. Contrasting effects of functionally distinct tadpole species on nutrient cycling and litter breakdown in a tropical rainforest stream. Freshwater Biology 63: 202–213.

    CAS  Google Scholar 

  88. Rezende, R. S., M. A. S. Graça, A. M. Santos, A. O. Medeiros, P. F. Santos, Y. R. Nunes & J. F. Gonçalves Júnior, 2016. Organic matter dynamics in a tropical forest in a grassland landscape. Biotropica 48: 301–310.

    Google Scholar 

  89. Rezende, R. S., G. F. M. Leite, K. Ramos, I. Torres, A. M. Tonin & J. F. Gonçalves Jr., 2018. Effects of litter size and quality on processing by decomposers in a tropical savannah stream. Biotropica 50: 578–585.

    Google Scholar 

  90. Richardson, J. S., C. R. Shaughnessy & P. G. Harrison, 2004. Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Archiv für Hydrobiologie 159: 309–325.

    Google Scholar 

  91. Rodrigues, R. R. & A. G. Nave, 2001. Heterogeneidade florística das Matas Ciliares. In Rodrigues, R. R. & H. F. Leitão-Filho (eds), Matas Ciliares: conservação e recuperação. FAPESP, São Paulo: 45–71.

    Google Scholar 

  92. Sales, M. A., J. F. Gonçalves Jr., J. S. Dahora & A. O. Medeiros, 2014. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecology 69: 84–94.

    PubMed  Google Scholar 

  93. Shah, J. J. F., J. S. Kominoski, M. Ardón, W. K. Dodds, M. O. Gessner, N. A. Griffiths, C. P. Hawkins, S. L. Johnson, A. Lecerf, C. J. LeRoy, D. W. P. Manning, A. D. Rosemond, R. L. Sinsabaugh, C. M. Swan, J. R. Webster & L. H. Zeglin, 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23: 3064–3075.

    Google Scholar 

  94. Shaw, E. A. & J. S. Richardson, 2001. Direct and indirect effects of sediment pulse duration on stream invertebrate assemblages and rainbow trout (Oncorhynchus mykiss) growth and survival. Canadian Journal of Fisheries and Aquatic Sciences 58: 2213–2221.

    Google Scholar 

  95. Silva-Junior, E. F., T. P. Moulton, I. G. Boëchat & B. Gücker, 2014. Leaf decomposition and ecosystem metabolism as functional indicators of land use impacts on tropical streams. Ecological Indicators 36: 195–204.

    CAS  Google Scholar 

  96. Spänhoff, B., C. Augspurger & K. Küsel, 2007. Comparing field and laboratory breakdown rates of coarse particulate organic matter: sediment dynamics mask the impacts of dissolved nutrients on CPOM mass loss in streams. Aquatic Sciences 69: 495–502.

    Google Scholar 

  97. Stoker, D., A. J. Falkner, K. M. Murray, A. K. Lang, T. R. Barnum, J. Hepinstall-Cymerman, M. J. Conroy, R. J. Cooper & C. M. Pringle, 2017. Decomposition of terrestrial resource subsidies in headwater streams: does consumer diversity matter? Ecosphere 8: e01868.

    Google Scholar 

  98. Suren, A. M. & I. G. Jowett, 2001. Effects of deposited sediment on invertebrate drift: an experimental study. New Zealand Journal of Marine and Freshwater Research 35: 725–737.

    Google Scholar 

  99. Tagliaferro, M., A. Giorgi, A. Torremorell & R. Albariño, 2019. Urbanisation reduces litter breakdown rates and affects benthic invertebrate structure in Pampean streams. International Review of Hydrobiology 105: 33–43.

    Google Scholar 

  100. Tanaka, M. O., J. F. Fernandes, C. M. Suga, F. Y. Hanai & A. L. T. Souza, 2015. Abrupt change of a stream ecosystem function along a sugarcane-forest transition: integrating riparian and in-stream characteristics. Agriculture, Ecosystems and Environment 207: 171–177.

    Google Scholar 

  101. Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Google Scholar 

  102. Taylor, J. M., R. E. Lizotte Jr. & S. Testa III, 2019. Breakdown rates and associated nutrient cycling vary between novel crop-derived and natural riparian detritus in aquatic agroecosystems. Hydrobiologia 827: 211–224.

    CAS  Google Scholar 

  103. Tiegs, S. D., D. M. Costello, M. W. Isken, G. Woodward, P. B. McIntyre, M. O. Gessner, E. Chauvet, N. A. Griffiths, A. S. Flecker, V. Acuña, et al., 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances 5: eaav0486.

    PubMed  PubMed Central  Google Scholar 

  104. Tomanova, S., E. Goitia & J. Helesic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams. Hydrobiologia 556: 251–264.

    Google Scholar 

  105. Vasconcelos, M. C. & A. S. Melo, 2008. An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream. Hydrobiologia 610: 321–329.

    Google Scholar 

  106. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    CAS  Google Scholar 

  107. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96: 1213–1228.

    PubMed  Google Scholar 

  108. Ward, J., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Google Scholar 

  109. Webster, J. R. & J. L. Meyer, 1997. Organic matter budgets for streams: a synthesis. Stream Organic Matter Budgets. Journal of the North American Benthological Society 16: 141–161.

    Google Scholar 

  110. Wohlgemuth, D., M. Solan & J. A. Godbold, 2016. Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Scientific Reports 6: 39325.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wyatt, K. H. & M. R. Turetsky, 2015. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. Journal of Ecology 103: 1165–1171.

    CAS  Google Scholar 

  112. Yeung, A. C. Y., J. L. Musetta-Lambert, D. P. Kreutzweiser, P. K. Sibley & J. S. Richardson, 2018. Relations of interannual differences in stream litter breakdown with discharge: bioassessment implications. Ecosphere 9: e02423.

    Google Scholar 

  113. Yule, C. M., M. Y. Leong, K. C. Liew, L. Ratnarajah, K. Schmidt, H. M. Wong, R. G. Pearson & L. Boyero, 2009. Shredders in Malaysia: abundance and species richness are higher in highland, temperate-like, tropical streams. Journal of the North American Benthological Society 28: 404–415.

    Google Scholar 

  114. Zeni, J. O. & L. Casatti, 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726: 259–270.

    Google Scholar 

  115. Zúñiga-Céspedes, B., M. C. Zúñiga & J. Chará, 2018. The effect of macroinvertebrate exclusion on leaf breakdown rates in two upland Colombian streams. Revista de Biologia Tropical 66: 457–467.

    Google Scholar 

Download references

Acknowledgements

We thank members of the Ecologia Energética Laboratory for assistance with data collection and discussion. We also thank Gustavo Henrique Zaia Alves and Patricia Almeida Sacramento for reviews of an earlier draft of this paper, Jorge Luiz Rodrigues Filho and Vinicius Neres-Lima for the assistance with statistics, and Paulo Buosi (in memoriam) for assistance with field work. This work was supported by a PhD grant no 140577/2012-2 to VMC, by a Project grant no 475256/2012-3, and by PROEX—PEA funding, all from the National Council for Scientific and Technological Development—CNPq.

Funding

This work was supported by a PhD grant no 140577/2012-2 to VMC, by a Project grant no 475256/2012-3, and by PROEX—PEA funding, all from the National Council for Scientific and Technological Development—CNPq.

Author information

Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: VMC and EBB; TMM; data collection: VMC, FNOF, LHP, and GOL; analysis and interpretation of results: VMC and TMM; FNOF, LHP; and draft manuscript preparation and critical revision: VMC and TMM; FNOF, LHP, EB, and GOL

Corresponding author

Correspondence to Vivian de Mello Cionek.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Consent for publication

All authors reviewed the results and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Litter bags filled with Alchornea glandulosa leaf packs within the 3-exclusion mesh treatment. Coarse-mesh: 10 mm; Medium-mesh: 2 mm; Fine-mesh: 0.2 mm. Supplementary material 1 (JPG 689 kb)

Fig. S2 Invertebrate taxonomic differences among streams. A = fine-mesh, B = Medium-mesh, C = coarse-mesh. Supplementary material 2 (TIFF 11294 kb)

Fig. S3 Invertebrate functional differences among streams. A = fine-mesh, B = Medium-mesh, C = coarse-mesh. Supplementary material 3 (TIFF 11294 kb)

Microbial biomass (ATP) among mesh exclusion treatments (fine, medium and coarse) in each stream separately along the processing period. F = fine-mesh, M = medium-mesh, C = coarse-mesh. Supplementary material 4 (JPG 228 kb)

Supplementary material 5 (JPG 262 kb)

Supplementary material 6 (DOCX 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Mello Cionek, V., Fogaça, F.N.O., Moulton, T.P. et al. Influence of leaf miners and environmental quality on litter breakdown in tropical headwater streams. Hydrobiologia 848, 1311–1331 (2021). https://doi.org/10.1007/s10750-021-04529-6

Download citation

Keywords

  • Environmental quality
  • Decomposition
  • Equitability
  • Water flow
  • ATP
  • Stenochironomus sp.