Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38 years

Abstract

Processes associated with reservoir aging threaten the capacity of systems to continue providing productive fisheries, and declining productivity might be exacerbated by decreasing water level associated with climate change and water abstraction. Despite their prevalence in riverscapes, we know little about long-term fish dynamics in reservoirs. Using a 38-year dataset from Lake Powell, USA, we tested for changes in assemblage structure and changes in fish condition for the most abundant species. The assemblage has undergone re-ordering of species relative abundance, but the same core species captured in 1981 were still present in 2018. Five species increased in relative abundance, while two declined, and seven remained unchanged. Walleye Sander vitreus and Smallmouth Bass Micropterus dolomieu were among those increasing over time, while Channel Catfish Ictalurus punctatus and Common Carp Cyprinus carpio declined. We were not able to attribute changes in fish assemblages with a suite of abiotic and biotic variables. Condition was low and declined over time for four of the six species. Although water level declined over time, we did not observe obvious declines in basal food resources. Declining water level has reduced availability of littoral habitat and likely contributed to declines in some species associated with this zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119-1132.

    CAS  Google Scholar 

  2. Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26-36.

    Google Scholar 

  3. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32-46.

    Google Scholar 

  4. Arrantes, C. C., D. B. Fitzgerald, D. J. Hoeinghaus, & K. O. Winemiller, 2019. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability 37: 28-40.

    Google Scholar 

  5. Baumgartner, M. T., G. Baumgartner & L. C. Gomes, 2018. Spatial and temporal variations in fish assemblage: testing the zonation concept in small reservoirs. Brazilian Journal of Biology 78: 487-500.

    CAS  Google Scholar 

  6. Baumgartner, M. T., P. A. Piana, G. Baumgartner & L. C. Gomes, 2020. Storage or run-of-river reservoirs: Exploring the ecological effects of dam operation on stability and species interactions of fish assemblages. Environmental Management 65: 220-231.

    PubMed  Google Scholar 

  7. Beaver, J. R., J. E. Kirsch, C. E. Tausz, E. E. Samples, T. R. Renicker, K. C. Scotese, H. A. McMaster, B. J. Blasius-Wert, P. V. Zimba, & D. A. Casamatta, 2018. Long-term trends in seasonal plankton dynamics in Lake Mead (Nevada-Arizona, USA) and implications for climate change. Hydrobiologia 822: 85-109.

  8. Bestgen, K. R., D. W. Beyeres, G. B. Haines & J. A. Rice, 2006. Factors affecting recruitment of young Colorado pikeminnow: synthesis of predation experiments, field studies, and individual-based modeling. Transactions of the American Fisheries Society 135: 1722-1742.

    Google Scholar 

  9. Buckmeier, D. L., N. G. Smith, B. P. Fleming, & K. A. Bodine, 2014. Intra-annual variation in river-reservoir interface fish assemblages: Implicaitons for fish conservation and management in regulated rivers. River Research and Applications 30: 780-790.

  10. Cathcart, C. N., C. A. Pennock, C. A. Cheek, M. C. McKinstry, P. D. MacKinnon, M. M. Conner & K. B. Gido, 2018. Waterfall formation at a desert river-reservoir delta isolates endangered fishes. River Research and Applications 34: 948-956.

    Google Scholar 

  11. Christensen, N. S., A. W. Wood, N. Voisin, D. P. Lettenmaier & R. N. Palmer, 2004. The effects of climate change on the hydrology and water resources of the Colorado River Basin. Climatic Change 62: 337-363.

    Google Scholar 

  12. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117-143.

    Google Scholar 

  13. Dawadi, S. & S. Ahmad, 2012. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. 430-431: 127-141.

    Google Scholar 

  14. Deemer B. R., E. G. Stets & C. B. Yackulic, 2020. Calcite precipitation in Lake Powell reduces alkalinity loading to the Lower Colorado River Basin. Limnology and Oceanography 65: 1439-1455.

    CAS  Google Scholar 

  15. Dodds W. K., L. Bruckerhoff, D. Batzer, A. Schechner, C. Pennock, E. Renner, F. Tromboni, K. Bigham & S. Grieger, 2019. The freshwater biome gradient framework: predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere 10: e02786.

    Google Scholar 

  16. Dolman, W. B, 1990. Classification of Texas reservoirs in relation to limnology and fish community associations. Transactions of the American Fisheries Society 119: 511-520.

    PubMed  PubMed Central  Google Scholar 

  17. Eloranta, A. P., A. G. Finstad, I. P. Helland, O. Ugedal & M. Power, 2018. Hydropower impacts on reservoir fish populations are modified by environmental variation. Science of the Total Environment 618: 313-322.

    CAS  Google Scholar 

  18. Ferrareze, M., L. Casatti & M. G. Nogueira, 2014. Spatial heterogeneity affecting fish fauna in cascade reservoirs of the Upper Paraná Basin, Brazil. Hydrobiologia 738: 97-109.

    CAS  Google Scholar 

  19. Finney, S. T. & M. H. Fuller, 2008. Gizzard Shad (Dorosoma cepedianum) expansion and reproduction in the Upper Colorado River Basin. Western North American Naturalist 68: 524-525.

  20. Gao, X., M. Fujiwara, K. O. Winemiller, P. Lin, M. Li & H. Liu, 2019. Regime shift in fish assemblage structure in the Yangtze River following construction on the Three Gorges Dam. Scientific Reports 9: 4212.

    PubMed  PubMed Central  Google Scholar 

  21. George, M. W., R. H. Hotchkiss & R. Huffaker, 2017. Reservoir sustainability and sediment management. Journal of Water Resources Planning and Management 143: 04016077.

    Google Scholar 

  22. Gido, K. B., W. J. Matthews & W. C. Wolfinbarger, 2000. Long-term changes in a reservoir fish assemblage: stability in an unpredictable environment. Ecological Applications 10: 1517-1529.

    Google Scholar 

  23. Grill, G., B. Lehner, M. Thieme, B. Geenen, D. Tickner, F. Antonelli, S. Babu, P. Borrelli, L. Cheng, H. Crochetiere, H. Ehalt Macedo, R. Filgueiras, M. Goichot, J. Higgins, Z. Hogan, B. Lip, M. E. McClain, J. Meng, M. Mulligan, C. Nilsson, J. D. Olden, J. J. Opperman, P. Petry, C. Reidy Leirmann, L. Sáenz, S. Salinas-Rodríguez, P. Schelle, R. J. P. Schmitt, J. Snider, F. Tan, K. Tockner, P. H. Valdujo, A. van Soesbergen & C. Zarfl, 2019. Mapping the world’s free-flowing rivers. Nature 569: 215-221.

    CAS  PubMed  Google Scholar 

  24. Havel, J. E., C. E. Lee & J. M. Vander Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518-525.

    Google Scholar 

  25. Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes—A meta-analysis of dreissenid mussel impacts on freshwater systems. Ecological Monographs 80: 179-196.

    Google Scholar 

  26. Hrbáček, J., Z. Brandl & M. Straškraba, 2003. Do the long-term changes in zooplankton biomass indicate changes in fish stock? Hydrobiologia 504: 203-213.

    Google Scholar 

  27. Irz, P., M. Odion, C. Argillier & D. Point, 2006. Comparison between the fish communities of lakes, reservoirs and rivers: Can natural systems help define the ecological processes of reservoirs? Aquatic Sciences 68: 109-116.

    Google Scholar 

  28. Jenkins, R. M., 1967. The influence of some environmental factors on standing crop and harvest of fish in U.S. reservoirs. In Reservoir Fishery Resources Symposium. Southern Division, Reservoir Committee, American Fisheries Society, Bethesda, MD: 298–321.

  29. Johnson, B. M., P. J. Martinez, J. A. Hawkins & K. R. Bestgen, 2008a. Ranking predatory threats by nonnative fishes in the Yampa River, Colorado, via bioenergetics modeling. North American Journal of Fisheries Management 28: 1941-1953.

    Google Scholar 

  30. Johnson, P. T. J., J. D. Olden & M. J. Vander Zanden, 2008b. Dam invaders: impoundments facilitate biological invasions in freshwaters. Frontiers in Ecology and the Environment 6: 357-363.

    Google Scholar 

  31. Jones S. K., J. Ripplinger & S. L. Collins, 2017. Species reordering, not changes in richness, drives long-term dynamics in grassland communities. Ecology Letters 20: 1556-1565.

    PubMed  Google Scholar 

  32. Juracek, K. E, 2015. The aging of America’s reservoirs: in-reservoir and downstream physical changes and habitat implications. Journal of the American Water Resources Association 51: 164-184.

    Google Scholar 

  33. Kimmel, B. L. & A. W. Groeger, 1986. Limnological and ecological changes associated with reservoir aging. In Hall, G. E. & M. J. Van Den Avyle (eds), Reservoir Fisheries Management: Strategies for the 80’s. American Fisheries Society, Southern Division, Reservoir Committee, Bethesda, MD: 103-109.

    Google Scholar 

  34. Krogman, R. M. & L. E. Miranda, 2016. Rating US reservoirs relative to fish habitat condition. Lake and Reservoir Management 32: 51-60.

    Google Scholar 

  35. Lacerda dos Santos, N. C., E. García-Berthou, J. D. Dias, T. M. Lopes, I. P. Affonso, W. Severi, L. C. Gomes & A. A. Agostinho, 2018. Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia 819: 77-91.

    Google Scholar 

  36. Lacerda dos Santos, N. C., R. M. Dias, D. C. Alves, B. A. Ribeiro de Melo, M. J. M. Ganassin, L. C. Gomes, W. Severi & A. A. Agostinho, 2020. Trophic and limnological changes in highly fragmented rivers predicts the decreasing abundance of detritivorours fish. Ecological Indicators 110: 105933.

    Google Scholar 

  37. Lamothe, K. A., D. A. Jackson & K. M. Somers, 2018. Long-term trajectories among lake crustacean zooplankton communities and water chemistry. Canadian Journal of Fisheries and Aquatic Sciences 75: 1926-1939.

    Google Scholar 

  38. Lin, P., X. Gao, F. Liu, M. Li & H. Liu, 2019. Long-term monitoring revealed fish assemblage zonation in the Three Gorges Reservoir. Journal of Oceanology and Limnology 37: 1258-1267.

    CAS  Google Scholar 

  39. Loures, R. C. & P. S. Pompeu, 2019. Temporal changes in fish diversity in lotic and lentic environments along a reservoir cascade. Freshwater Biology 64: 1806-1820.

    Google Scholar 

  40. Matthews, W. J., K. B. Gido & F. P. Gelwick, 2004. Fish assemblages of reservoirs, illustrated by Lake Texoma (Oklahoma-Texas, USA) as a representative system. Lake and Reservoir Management 20: 219-239.

    Google Scholar 

  41. Matthews, W. J. & E. Marsh-Matthews, 2016. Dynamics of an upland stream fish community over 40 years: trajectories and support for the loose equilibrium concept. Ecology 97: 706-719.

    PubMed  Google Scholar 

  42. Milbrink, G., T. Vrede, L. J. Tranvik & E. Rydin, 2011. Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 68: 2167-2173.

    Google Scholar 

  43. Milly, P. C. D. & K. A. Dunne, 2020. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367: 1252-1255.

    CAS  PubMed  Google Scholar 

  44. Miranda, L. E. & P. P. Durocher, 1986. Effects of environmental factors on growth of Largemouth Bass in Texas reservoirs. In Hall, G. E. & M. J. Van Den Avyle (eds), Reservoir Fisheries Management: Strategies for the 80s. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD: 115–121.

    Google Scholar 

  45. Miranda, L. E., M. D. Habrat, & S. Miyazono, 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society 137: 1851-1865.

    Google Scholar 

  46. Miranda, L. E. & P. W. Bettoli, 2010. Large reservoirs. In Hubert, W. A. & M. C. Quist (eds), Inland Fisheries Management in North America, 3rd edn. American Fisheries Society, Bethesda, MD: 545-586.

    Google Scholar 

  47. Monaghan, K. A., C. S. Agostinho, F. M. Pelicice, & A. M. V. M. Soares, 2020. The impact of a hydroelectric dam on Neotropical fish communities: a spatio-temporal analysis of the Trophic Upsurge Hypothesis. Ecology of Freshwater Fish 29: 384-397.

    Google Scholar 

  48. Mueller, G. A. & J. L. Brooks, 2004. Collection of an adult Gizzard Shad (Dorosoma cepedianum) from the San Juan River, Utah. Western North American Naturalist 64: 135-136.

  49. Mueller, G. A. & M. J. Horn, 2004. Distribution and abundance of pelagic fish in Lake Powell, Utah, and Lake Mead, Arizona-Nevada. Western North American Naturalist 64: 306-311.

    Google Scholar 

  50. Murphy, C. A., A. Evans, B. Coffin, I. Arismendi & S. L. Johnson, 2019. Resilience of zooplankton communities in temperate reservoirs with extreme water level fluctuations. Inland Waters 10: 256-266.

    Google Scholar 

  51. Neumann, R. M., C. S. Guy & D. W. Willis, 2012. Length, weight, and associated indices. In Zale, A. V., D. L. Parrish & T. M. Sutton (eds), Fisheries Techniques, 3rd edn. American Fisheries Society, Bethesda, MD: 637-676.

    Google Scholar 

  52. O’Brien, W. J., 1990. Perspectives on fish in reservoir ecosystems. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 209-226.

    Google Scholar 

  53. Okada, E. K., A. A. Agostinho & L. C. Gomes, 2005. Spatial and temporal gradients in artisanal fisheries of a large Neotropical reservoir, the Itaipu Reservoir, Brazil. Canadian Journal of Fisheries and Aquatic Sciences 62: 714-724.

    Google Scholar 

  54. Orsi, M. L. & J. R. Britton, 2014. Long-term changes in the fish assemblage of a neotropical hydroelectric reservoir. Journal of Fish Biology 84: 1964-1970.

    CAS  PubMed  Google Scholar 

  55. Paulson, L. J. & J. R. Baker, 1983. Limnology in reservoirs on the Colorado River. Tech. Compl. Rept. OWRT-B-121-NEV-1. Nevada Water Resource Research Center, Las Vegas.

  56. Pennock, C. A., M. C. McKinstry, C. N. Cathcart, K. B. Gido, T. A. Francis, B. A. Hines, P. D. MacKinnon, S. C. Hedden, E. I. Gilbert, C. A. Cheek, D. W. Speas, K. Creighton, D. S. Elverud & B. J. Schleicher, 2020. Movement ecology of imperiled fish in a novel ecosystem: river-reservoir movements by razorback sucker and translocations to aid conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 1540-1551.

    Google Scholar 

  57. Pennock, C. A., B. A. Hines, D. S. Elverud, T. A. Francis, M C. McKinstry, B. J. Schleicher & K. B. Gido, 2021. Reservoir fish assemblage structure across an aquatic ecotone: Can river-reservoir interfaces provide conservation and management opportunities? Fisheries Management and Ecology 28: 1-13.

    Google Scholar 

  58. Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.

    Google Scholar 

  59. Ploskey, G. R., 1981. Factors affecting fish production and fishing quality in new reservoirs, with guidance on timber clearing, basin preparation, and filling. Vicksburg, MS. U.S. Army Corps of Engineers Waterways Experiment Station Technical Report E-81-11.

  60. Ploskey, G. R., 1986. Effects of water-level changes on reservoir ecosystems, with implications for fisheries management. In Hall, G. E. & M. J. Van Den Avyle (eds), Reservoir Fisheries Management: Strategies for the 80s. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD: 86-97.

    Google Scholar 

  61. Potter, L. D. & N. B. Pattison, 1976. Shoreline Ecology Lake Powell. Lake Powell Research Project Bulletin 29. Institute of Geophysics and Planetary Physics, University of California, Los Angeles.

  62. Potter, L. D. & C. Drake, 1989. Lake Powell: Virgin Flow to Dynamo. University of New Mexico Press, Albuquerque.

    Google Scholar 

  63. Raborn, S. W., L. E. Miranda & T. Driscoll, 2002. Effects of simulated removal of Striped Bass from a southeastern reservoir. North American Journal of Fisheries Management 22: 406-417.

    Google Scholar 

  64. R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  65. Říha, M., J. Kubečka, M. Vašek, J. Seďa, T. Mrkvička, M. Prchalvoá, J. Matēna, M. Hladík, M. Čech, V. Draštík, J. Frouzová, e. Hohausová, O. Jarolím, T. Jůza, M. Kratochvíl, J. Peterka & M. Tŭser, 2009. Long-term development of fish populations in the Římov Reservoir. Fisheries Management and Ecology. 16: 121-129.

    Google Scholar 

  66. Rosenberg, D. M., P. McCully & C. M. Pringle, 2000. Global – Scale environmental effects of hydrological alterations: introduction. BioScience 50: 746-751.

    Google Scholar 

  67. Schaus, M. H. & M. J. Vanni. 2000. Effects of Gizzard Shad on phytoplankton and nutrient dynamics: Role of sediment feeding and fish size. Ecology 81: 1701-1719.

    Google Scholar 

  68. Severson, J. P., J. R. Nawrot & M. W. Eichholz, 2009. Shoreline stabilization using riprap breakwaters on a Midwestern reservoir. Lake and Reservoir Management 25: 208-216.

    Google Scholar 

  69. Shelton, W. L., W. D. Davies, T. A. King & T. J. Timmons, 1979. Variation in the growth of the initial year class of largemouth bass in West Point Reservoir, Alabama and Georgia. Transactions of the American Fisheries Society 108: 142-149.

    Google Scholar 

  70. Sollberger, P. J., P. D. Vaux & L. J. Paulson, 1989. Investigation of Vertical and Seasonal Distribution, Abundance, and Size Structure of Zooplankton in Lake Powell. University of Nevada, Las Vegas.

    Google Scholar 

  71. Stanford, J. A. & J. V. Ward, 1991. Limnology of Lake Powell and the chemistry of the Colorado River. In Colorado River Ecology and Dam Management. National Academy Press, Washington (DC): 75–101.

  72. Turgeon, K., C. T. Solomon, C. Nozais, & I. Gregory-Eaves, 2016. Do novel ecosystems follow predictable trajectories? Testing the trophic surge hypothesis in reservoirs using fish. Ecosphere 7:e01617.

    Google Scholar 

  73. Thornton, K. W., B. L. Kimmel & F. E. Payne, 1990. Reservoir Limnology: Ecological Perspectives. Wiley, New York.

    Google Scholar 

  74. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1209-1228.

    Google Scholar 

  75. Vašek, M., J. Kubečka, J. Peterka, M. Čech, V. Draštík, M. Hladík, M. Prchalová & J. Frouzová, 2004. Longitudinal and vertical spatial gradients in the distribution of fish within a canyon-shaped reservoir. International Review of Hydrobiology 91: 178-194.

    Google Scholar 

  76. Vašek, M., M. Prchalová, M. Říha, P. Blabolil, M. Čech, V. Draštík, J. Frouzová, T. Jůza, M. Kratochvíl, M. Muška, J. Peterka, Z. Sajdlová, M. Šmejkal, M. Tušer, L. Vejřík, P. Znachor, T. Mrkvička, J. Seďa & J. Kubečka, 2016. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: implications for ecological monitoring and management. Ecological Indicators 63: 219-230.

    Google Scholar 

  77. Vatland, S. & P. Budy, 2007. Predicting the invasion success of an introduced omnivore in a large, heterogenous reservoir. Canadian Journal of Fisheries and Aquatic Sciences 64: 1329-1345.

    Google Scholar 

  78. Vatland, S., P. Budy & G. P. Thiede, 2008. A bioenergetics approach to modeling Striped Bass and Threadfin Shad predator-prey dynamics in Lake Powell, Utah-Arizona. Transactions of the American Fisheries Society 137: 262-277.

    Google Scholar 

  79. Vernieu, W. S., 2015a. Historical physical and chemical data for water in Lake Powell and from Glen Canyon Dam releases, Utah-Arizona, 1964–2013 (ver. 3.0, February 2015): U.S. Geological Survey Data Series 471: 23 pp.

  80. Vernieu, W. S., 2015b. Biological data for water in Lake Powell and from Glen Canyon Dam releases, Utah and Arizona, 1990–2009: U.S. Geological Survey Data Series 959: 12 pp.

  81. Wang, Y., U. Naumann, S. T. Wright & D. I. Warton, 2012. mvabund-an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution 3: 471-474.

    Google Scholar 

  82. Wang, Y., U. Naumann, D. Eddelbuettel, J. Wilshire & D. Warton, 2019. mvabund: Statistical methods for analyzing multivariate abundance data. R package version 4.0.1. https://CRAN.R-project.org/package=mvabund.

  83. Ward, M. J., D. W. Willis, B. H. Miller & S. R. Chipps, 2007. Walleye consumption and long-term population trends following Gizzard Shad introduction into a western South Dakota reservoir. Journal of Freshwater Ecology 22: 339-345.

    Google Scholar 

  84. Williams, A. P., E. R. Cook, J. E. Smerdon, B. I Cook. J. T. Abatzoglou, K. Bolles, S. H. Baek, A. M. Badger, & B. Livneh, 2020. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368: 314-318.

    CAS  PubMed  Google Scholar 

  85. Wolff, B. A., B. M. Johnson, A. R. Breton, P. J. Martinez & D. L. Winkelman, 2012. Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths. Canadian Journal of Fisheries and Aquatic Sciences 69: 724-739.

    CAS  Google Scholar 

  86. Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Society (B) 73: 3-36.

    Google Scholar 

  87. Wuellner, M. R., S. R. Chipps, D. W. Willis & W. E. Adams Jr., 2010. Interactions between Walleyes and Smallmouth Bass in a Missouri River reservoir with consideration of the influence of temperature and prey. North American Journal of Fisheries Management 30: 445-462.

    Google Scholar 

  88. Wurtsbaugh, W. A. & K. L. Gallo (eds), 1997. Comparison of the Aquatic Ecology of Side-Canyons and the Main Channel of Lake Powell. Utah State University, Logan.

    Google Scholar 

Download references

Acknowledgements

We thank all field crews that contributed to data collection and logistical support over the years, and W. Gustaveson and G. Blommer for allowing us access to the data. We also thank B. Healy, L. Bruckerhoff, P. Budy, C. Yackulick, and three anonymous reviewers for providing helpful comments or discussion which improved the manuscript. J. Hensleigh, B. Deemer, and C. Yackulick (USGS) helped in getting access to limnological data. The authors declare no conflict of interest. Funding was provided by the US Bureau of Reclamation (KGB and CAP).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Casey A. Pennock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Andrew Dzialowski

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 745 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pennock, C.A., Gido, K.B. Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38 years. Hydrobiologia 848, 1231–1248 (2021). https://doi.org/10.1007/s10750-021-04514-z

Download citation

Keywords

  • Community
  • Stability
  • Non-native species
  • Colorado river
  • Long-term data