Trophic basis of production of stream detritivores shifts with reduced forest inputs

Abstract

Estimating changes in organic matter flow from resource to consumer using trophic basis of production (TBP) is a way to examine resource limitation effects on ecosystem function. We examined diet shifts and production of insect detritivores to assess changes with reduced detrital inputs to a forested headwater stream. Organic matter was excluded for 7 years using a canopy net. Small and large wood were removed from the stream after the 3rd and 5th year, respectively. Detritivore production declined after 3 years of litter exclusion. After wood removal, production of detritivores declined again. Steepest declines in Pycnopsyche gentilis production occurred within year 1. Tipula spp. and Tallaperla spp. production declined after wood removal. Diets shifted from leaves to wood to fine particulate organic matter (FPOM) for Tipula spp. and Tallaperla spp., but not for P. gentilis. Resource flows to detritivores shifted in the exclusion stream from leaves to wood to FPOM after leaf standing crops declined and wood removal. Small wood was an important food resource. TBP results showed shifts in food resource use by two detritivores with terrestrial input reduction. These findings suggest that maintaining diverse riparian inputs of organic matter is important for detritivore productivity in forested headwater watersheds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analzsed during this study are included in this published article and its supplementary information file.

References

  1. Anderson, N. H. & A. S. Cargill, 1987. Nutritional ecology of aquatic detritivorous insects. In Slansky Jr., F. & J. G. Rodriguez (eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, New York: 903–925.

    Google Scholar 

  2. Anderson, N. H., R. J. Steedman & T. Dudley, 1984. Patterns of exploitation by stream invertebrates of wood debris (xylophagy). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 1847–1852.

    Google Scholar 

  3. Benke, A. C., 1985. Importance of the snag habitat for animal production in a southeastern stream. Fisheries 10: 8–13.

    Article  Google Scholar 

  4. Benke, A. C., 2018. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position. Ecology 99: 1370–1381.

    PubMed  Article  Google Scholar 

  5. Benke, A. C. & J. B. Wallace, 1980. Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology 61: 108–118.

    Article  Google Scholar 

  6. Benke, A. C. & J. B. Wallace, 1997. Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology 78: 1132–1145.

    Article  Google Scholar 

  7. Benke, A. C., J. B. Wallace, J. W. Harrison & J. W. Koebel, 2001. Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Freshwater Biology 46: 329–346.

    Article  Google Scholar 

  8. Couch, C. A. & J. L. Meyer, 1992. Development and composition of the epixylic biofilm in a blackwater river. Freshwater Biology 27: 43–51.

    Article  Google Scholar 

  9. Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  10. Dangles, O., 2002. Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 1563–1573.

    Article  Google Scholar 

  11. Eggert, S. L. & J. B. Wallace, 2007. Wood biofilm as a food resource for stream detritivores. Limnology and Oceanography 52: 1239–1245.

    Article  Google Scholar 

  12. Eggert, S. L., J. B. Wallace, J. L. Meyer & J. R. Webster, 2012. Storage and export of organic matter in a headwater stream: responses to long-term detrital manipulations. Ecosphere 3(9): 75.

    Article  Google Scholar 

  13. Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  14. Grubbs, S. A. & K. W. Cummins, 1996. Linkages between riparian forest composition and shredder voltinism. Archiv für Hydrobiologie 137: 39–58.

    Google Scholar 

  15. Hall, R. O., J. B. Wallace & S. L. Eggert, 2000. Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81: 3445–3463.

    Article  Google Scholar 

  16. Hax, C. L. & S. W. Golladay, 1993. Macroinvertebrate colonization and biofilm development on leaves and wood in a boreal river. Freshwater Biology 29: 79–87.

    Article  Google Scholar 

  17. Hoffman, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in central European streams. International Review of Hydrobiology 85: 25–48.

    Article  Google Scholar 

  18. Hutchens, J. J., E. F. Benfield & J. R. Webster, 1997. Diet and growth of a leaf-shredding caddisfly in southern Appalachian streams of contrasting disturbance history. Hydrobiologia 346: 193–201.

    Article  Google Scholar 

  19. Klug, M. J. & S. Kotarski, 1980. Bacteria associated with the gut tract of larval stages of aquatic cranefly Tipula abdominalis (Diptera; Tipulidae). Applied and Environmental Microbiology 40: 408–416.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Lawson, D. L., M. J. Klug & R. W. Merritt, 1984. The influence of the physical, chemical, and microbiological characteristics of decomposing leaves on the growth of the detritivore Tipula abdominalis (Diptera: Tipulidae). Canadian Journal of Zoology 62: 2339–2343.

    Article  Google Scholar 

  21. Loreau, M., 2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91: 3–17.

    Article  Google Scholar 

  22. Lugthart, G. J. & J. B. Wallace, 1992. Effects of disturbance on benthic functional structure and production in mountain streams. Journal of the North American Benthological Society 11: 138–164.

    Article  Google Scholar 

  23. Mackay, R. J. & J. Kalff, 1973. Ecology of two related species of caddis fly larvae in the organic substrates of a woodland stream. Ecology 54: 499–511.

    Article  Google Scholar 

  24. Martin, M. M., J. S. Martin, J. J. Kukor & R. W. Merritt, 1980. The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera: Tipulidae). Oecologia 46: 360–364.

    CAS  PubMed  Article  Google Scholar 

  25. McCann, K. & A. Hastings, 1997. Re-evaluating the omnivory-stability relationship in food webs. Proceedings of the Royal Society of London Series B 264: 1249–1254.

    Article  Google Scholar 

  26. McCann, K., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    CAS  Article  Google Scholar 

  27. McCann, K. S. & N. Rooney, 2009. The more food webs change, the more they stay the same. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364: 1789–1801.

    PubMed  Article  Google Scholar 

  28. Richardson, J. S., 1991. Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology 72: 873–887.

    Article  Google Scholar 

  29. Roeding, C. E. & L. A. Smock, 1989. Ecology of macroinvertebrate shredders in a low-gradient sandy-bottomed stream. Journal of the North American Benthological Society 8: 149–161.

    Article  Google Scholar 

  30. Rosi-Marshall, E. J. & J. B. Wallace, 2002. Invertebrate food webs along a stream resource gradient. Freshwater Biology 47: 129–141.

    Article  Google Scholar 

  31. Sinsabaugh, R. L., A. E. Linkins & E. F. Benfield, 1985. Cellulose digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66: 1464–1471.

    CAS  Article  Google Scholar 

  32. Smock, L. A. & C. E. Roeding, 1986. The trophic basis of production of the macroinvertebrate community of a southeastern U.S.A. blackwater stream. Holarctic Ecology 9: 165–174.

    Google Scholar 

  33. Stewart-Oaten, A., W. W. Murdoch & K. R. Parker, 1986. Environmental impact assessment: pseudoreplication in time? Ecology 67: 929–940.

    Article  Google Scholar 

  34. Tank J. L., 1996. Microbial activity on wood in streams: Exploring abiotic and biotic factors affecting the structure and function of wood biofilms. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

  35. Tank, J. L. & J. R. Webster, 1998. Interaction of substrate availability and nutrient distribution on wood biofilm development in streams. Ecology 79: 2168–2179.

    Article  Google Scholar 

  36. Tank, J. L., J. R. Webster & E. F. Benfield, 1993. Microbial respiration on decaying leaves and sticks in a southern Appalachian stream. Journal of the North American Benthological Society 12: 394–405.

    Article  Google Scholar 

  37. Tank, J. L., J. R. Webster & E. F. Benfield, 1998. Effect of leaf litter exclusion on microbial enzyme activity associated with wood biofilms in streams. Journal of the North American Benthological Society 17: 95–103.

    Article  Google Scholar 

  38. Tank, J. L. & M. J. Winterbourn, 1995. Biofilm development and invertebrate colonization of wood in four New Zealand streams of contrasting pH. Freshwater Biology 34: 303–315.

    Article  Google Scholar 

  39. Tank, J. L. & M. J. Winterbourn, 1996. Heterotrophic activity and invertebrate colonization of wood in a New Zealand forest stream. New Zealand Journal of Marine and Freshwater Research 30: 271–280.

    CAS  Article  Google Scholar 

  40. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    CAS  Article  Google Scholar 

  41. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.

    Article  Google Scholar 

  42. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2000. Small wood dynamics in a headwater stream. Proceedings of the International Association of Theoretical and Applied Limnology 27: 1361–1365.

    Google Scholar 

  43. Wallace, J. B., J. R. Webster, S. L. Eggert, J. L. Meyer & E. R. Siler, 2001. Large woody debris in a headwater stream: long-term legacies of forest disturbance. International Review of Hydrobiology 86: 501–513.

    Article  Google Scholar 

  44. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96: 1213–1228.

    PubMed  Article  Google Scholar 

  45. Webster, J. R. & J. L. Meyer, 1997. Stream organic matter budgets: an introduction. Journal of the North American Benthological Society 16: 3–13.

    Article  Google Scholar 

  46. White, T. C. R., 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33: 71–86.

    CAS  PubMed  Article  Google Scholar 

  47. Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the Natural Academy of Sciences 96: 1463–1466.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the technicians and students that assisted with this study. Special thanks to C. Wallace for digitizing many insect gut contents. S. Golladay, A. Rosemond, D. Batzer, M. Moretti, and two anonymous reviewers provided helpful comments that improved this paper. W. Swank, J. Vose, and B. Kloeppel at Coweeta Hydrologic Laboratory provided site support. The National Science Foundation (Grants DEB-9207498, DEB-9629268, and DEB-0212315) funded this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susan L. Eggert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eggert, S.L., Wallace, J.B., Meyer, J.L. et al. Trophic basis of production of stream detritivores shifts with reduced forest inputs. Hydrobiologia 847, 3091–3101 (2020). https://doi.org/10.1007/s10750-020-04317-8

Download citation

Keywords

  • Organic matter
  • Detritus
  • Gut contents
  • Freshwater invertebrate
  • Riparian
  • Flow food web