Skip to main content
Log in

Relationship between epipelon, epiphyton and phytoplankton in two limnological phases in a shallow tropical reservoir with high Nymphaea coverage

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macrophytes and phytoplankton are recognized as having roles in determining alternative stable states in shallow lakes and reservoirs, while the role of periphyton has been poorly investigated. Temporal and spatial variation of phytoplankton, epipelon and epiphyton was examined in a shallow reservoir with high abundance of aquatic macrophytes. The relationships between algae communities and abiotic factors, macrophyte coverage and zooplankton density were also analyzed. Monthly sampling was performed in three zones of the depth gradient of the reservoir. Two phases of algal dominance were found: a phytoplankton phase and epipelon phase. The phase of phytoplankton dominance was characterized by high macrophyte coverage. Rotifera was the dominant zooplankton group in all the zones. Flagellate algae were dominant in phytoplankton, epipelon and epiphyton. Macrophyte coverage was found to be a predictor for algal biomass. Changes in biomass and species composition were associated with macrophyte cover variation, mainly the Nymphaea. In addition to the abiotic factors, the macrophyte coverage was a determining factor for changes to the algal community, contributing to the alternation between dominance phases of phytoplankton and epipelon. The macrophyte–phytoplankton–periphyton relationship needs to be further known in shallow reservoirs, especially the role of epipelon as an alternate stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Bicudo et al. (2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA, 2005. Standard Methods for Examination of Water and Wastewater. American Public Health Association WWA, Washington, DC.

    Google Scholar 

  • Beisner, B. E., D. T. Haydon & K. Cuddington, 2003. Alternative stable states in ecology. Frontiers in Ecology and the Environment 1: 376–382.

    Google Scholar 

  • Bicudo, D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. M. Bicudo & T. Araújo-Jesus, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52: 1120–1133.

    Google Scholar 

  • Cano, M. G., M. A. Casco, L. C. Solari, M. E. MacDonagh, N. A. Gabellone & M. C. Claps, 2008. Implications of rapid changes in chlorophyll-a of plankton, epipelon, and epiphyton in a Pampean shallow lake: an interpretation in terms of a conceptual model. Hydrobiologia 614: 33–45.

    CAS  Google Scholar 

  • Casartelli, M. R. & C. Ferragut, 2015. Influence of seasonality and rooted aquatic macrophyte on periphytic algal community on artificial substratum in a shallow tropical reservoir. International Review of Hydrobiology 100: 1–11.

    Google Scholar 

  • Casco, M. A., M. E. Mac Donagh, M. G. Cano, L. Solari, M. C. Claps & N. Gabellone, 2009. Phytoplankton and epipelon responses to clear and turbid phases in a seepage lake (Buenos Aires, Argentina). International Review of Hydrobiology 94: 153–168.

    CAS  Google Scholar 

  • Castro, R. J. D., R. Henry, C. Ferragut & M. Casartelli, 2018. Comparing lacustrine environments: the importance of the kind of habitat on the structure of fishes. Acta Limnologica Brasiliensia. https://doi.org/10.1590/s2179-975x13417.

    Article  Google Scholar 

  • Eaton, J. W. & B. Moss, 1966. The estimations of numbers and pigment content in epipelic algal populations. Limnology and Oceanography 11: 584–595.

    Google Scholar 

  • Fernando, C. H., 2002. Guide to tropical freshwater zooplankton: identification, ecology and impact on fisheries. In Guide to Tropical Freshwater Zooplankton: Identification, Ecology and Impact on Fisheries. Backhuys, Leiden.

  • Fonseca, B. M., C. Ferragut, A. Tucci, L. O. Crossetti, F. Ferrari, D. C. Bicudo, C. L. Sant’Anna & C. E. M. Bicudo, 2014. Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. Hoehnea 41(1): 9–30.

    Google Scholar 

  • Genkai-Kato, M., Y. Vadeboncoeur, L. Liboriussen & E. Jeppesen, 2012. Benthic–planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes. Ecology 93: 619–631.

    PubMed  Google Scholar 

  • Goldsborough, L. G. & G. G. C. Robinson, 1996. Pattern in wetlands. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic, San Diego: 77–117.

    Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Google Scholar 

  • Hilt, S., 2015. Regime shifts between macrophytes and phytoplankton – concepts beyond shallow lakes, unravelling stabilizing mechanisms and practical consequences. Limnética 34: 467–480.

    Google Scholar 

  • Hobbs, W. O., J. M. Ramstack Hobbs, T. Lafrançois, K. D. Zimmer, K. M. Theissen, M. B. Edlund, N. Michelutti, M. G. Butler, M. A. Hanson & T. J. Carlson, 2012. A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecology Applications 22: 1483–1496.

    Google Scholar 

  • Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodo & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Bianca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584: 179–189.

    CAS  Google Scholar 

  • Jansson, M., P. Blomqvist, A. Jonsson & A. K. Bergström, 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnology and Oceanography 41: 1552–1559.

    CAS  Google Scholar 

  • Kosten, S. G., E. Jeppesen, D. Motta Marques, E. H. van Nes, N. Mazzeo & M. Scheffer, 2009. Effects of submerged vegetation on water clarity across climates. Ecosystems 12: 1117–1129.

    Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier Science Publication, London.

    Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.

    Google Scholar 

  • Margalef, R., 1983. La imprecisa frontera entre el plâncton y otros tipos de comunidades. In Azevedo, M. T. P., Santos, D. P., Sormus, L., Menezes, M., Fujii, M. T., Yokoya, N. S., Senna P. A. C. & Guimarães, S. M. P. B. (eds), Anais do 4º Congresso Latino-Americano, 2ª Reunião Ibero-Americana, 7ª Reunião Brasileira de Ficologia, Caxambu: 319–326.

  • McCune, B. & M. J. Mefford, 2011. PC-ORD. Multivariate analysis of ecological data.

  • O’Farrell, I., I. Izaguirre, G. Chaparro, F. Unrein, R. Sinistro, H. Pizarro, P. Rodriguez, P. T. Pinto, R. Lombardo & G. Tell, 2011. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquatic Sciences 73: 275–287.

    Google Scholar 

  • Olrik, K., 1998. Ecology of mixotrophic flagellates with special reference to Chrysophyceae in Danish lakes. In Phytoplankton and Trophic Gradients. Springer, Dordrecht: 329–338.

    Google Scholar 

  • Olsen, S., F. Chan, W. Li, S. Zhao, M. Søndergaard & E. Jeppesen, 2015. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology 60: 1525–1536.

    CAS  Google Scholar 

  • Padial, A. A. & S. M. Thomaz, 2008. Prediction of the light attenuation coefficient through the Secchi disk depth: empirical modeling in two large Neotropical ecosystems. Limnology 9: 143–151.

    Google Scholar 

  • Passarge, J., S. Hol, M. Escher & J. Huisman, 2006. Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecological Monographs 76: 57–72.

    Google Scholar 

  • Pellegrini, B. G. & C. Ferragut, 2018. Association between epiphyton species composition and macrophyte diversity in a shallow tropical reservoir. Fundamental and Applied Limnology 191: 111–122.

    Google Scholar 

  • Poulíčková, A., P. Dvořák, P. Mazalová & P. Hašler, 2014. Epipelic microphototrophs: an overlooked assemblage in lake ecosystems. Freshwater Science 33: 513–523.

    Google Scholar 

  • Robinson, G. G., S. E. Gurney & L. G. Goldsborough, 1997. Response of benthic and planktonic algal biomass to experimental water-level manipulation in a prairie lakeshore wetland. Wetlands 17: 167–181.

    Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton periphyton and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Google Scholar 

  • Santos, S. A. M., T. R. Santos, M. S. Furtado, R. Henry & C. Ferragut, 2018. Periphyton nutrient content, biomass and algal community on artificial substrate: response to experimental nutrient enrichment and the effect of its interruption in a tropical reservoir. Limnology 19: 209–218.

    CAS  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    CAS  Google Scholar 

  • Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshwater Biology 55: 500–513.

    CAS  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    CAS  PubMed  Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Google Scholar 

  • Sommer, U., 1988. Some size relationships in phytoflagellate motility. Hydrobiologia 161: 125–131.

    Google Scholar 

  • Souza, M. L., B. G. Pellegrini & C. Ferragut, 2015. Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir. Hydrobiologia 755: 183–196.

    Google Scholar 

  • Tezanos-Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Google Scholar 

  • Thomas, S., P. Cecchi, D. Corbin & J. Lemoalle, 2000. The different primary producers in a small African tropical reservoir during a drought: temporal changes and interactions. Freshwater Biology 45: 43–56.

    Google Scholar 

  • Thomaz, S. M., L. M. Bini & T. A. Pagioro, 2004. Métodos em Limnologia: macrófitas aquáticas. In Bicudo, C. E. & D. C. Bicudo (eds), Amostragem em Limnologia. Editora Rima, São Carlos: 193–212.

    Google Scholar 

  • Vadeboncoeur, Y. & M. E. Power, 2017. Attached algae: the cryptic base of inverted trophic pyramids in freshwaters. Annual Review of Ecology, Evolution, and Systematics 48: 255–279.

    Google Scholar 

  • Vadeboncoeur, Y. & A. D. Steinman, 2002. Periphyton function in lake ecosystems. The World Journal 2: 1–20.

    Google Scholar 

  • Vadeboncoeur, Y., D. M. Lodge & S. R. Carpenter, 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.

    Google Scholar 

  • Yang, H., R. J. Flower & R. W. Battarbee, 2009. Influence of environmental and spatial variables on the distribution of surface sediment diatoms in an upland loch, Scotland. Acta Botanica Croatica 68: 367–380.

    Google Scholar 

Download references

Acknowledgements

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for doctoral grants for TRS (Grant No. 2013/03130-2) and financial support (Grant No. 2009/52253-4). The authors are very grateful to the students and technicians involved in the laboratory work and in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ferragut.

Additional information

Handling editor: Alex Elliott

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.R., Castilho, M.C., Henry, R. et al. Relationship between epipelon, epiphyton and phytoplankton in two limnological phases in a shallow tropical reservoir with high Nymphaea coverage. Hydrobiologia 847, 1121–1137 (2020). https://doi.org/10.1007/s10750-019-04172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04172-2

Keywords

Navigation