Skip to main content
Log in

Immuno-modulation of settlement cues in the barnacle, Amphibalanus amphitrite: significance of circulating haemocytes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Gregarious settlement in barnacles has been attributed to chemical cues originating from the associated microorganisms, lectins, and settlement-inducing protein complex from arthropodin, a glycoprotein present in their conspecifics/adults. In this study, we explored the influence of haemolymph haemocytes on the metamorphosis of barnacle, Amphibalanus amphitrite cyprids. The barnacle haemocytes were also characterized for the first time using flow cytometry. Cyprid metamorphosis was significantly higher in the presence of surface-bound haemocytes compared to water-borne cues from haemolymph or adult glycoprotein, a known settlement inducer. The flow cytometry-assisted haemocyte characterization, sorting and their subsequent microscopic evaluation indicated the presence of hyalinocytes and granulocytes. Tagging of these haemocytes with lectins revealed that a significant number of haemocytes had d-glucose/d-mannose and N-acetyl-d-galactosamine, which are important settlement cues. These glycoconjugates were also detected in the cyprid larva pointing out the origin of conspecific cues. The retention of these glycoconjugates in the adult haemocytes and their occurrence in adult leachants indicate pelago-benthic coupling in sessile barnacles wherein these glycoconjugates play a significant role in their gregarious settlement. Characterization of such a coupling process in other sessile benthic invertebrates will pave the way to the understanding of complexities in their population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldred, N., A. Alsaab & A. S. Clare, 2018. Quantitative analysis of the complete larval settlement process confirms Crisp’s model of surface selectivity by barnacles. Proceedings of the Royal Society Series B 285(1872): 20171957.

    Article  Google Scholar 

  • Amirante, G. A., 1986. Cellular immune responses in crustaceans. In Gupta, A. P. (ed.), Hemocytic and humoral immunity in arthropods. Wiley, New York: 61–75.

    Google Scholar 

  • Anil, A. C., K. Chiba, K. Okamoto & K. Kurokura, 1995. Influence of temperature and salinity on the larval development of Balanus amphitrite: implications in the fouling ecology. Marine Ecology Progress Series 118: 159–166.

    Article  Google Scholar 

  • Armstrong, E., L. Yan, K. G. Boyd, P. C. Wright & J. G. Burgess, 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37–40.

    Article  Google Scholar 

  • Battistella, S., P. Bonivento & G. A. Amirante, 1996. Hemocytes and immunological reactions in crustaceans. Italian Journal of Zoology 63: 337–343.

    Article  Google Scholar 

  • Berg, J. M., J. L. Tymoczko & L. Stryer, 2002. In Biochemistry 5th edition. The Immune System, Chapter 33. W H Freeman, New York.

  • Cardenas, W., J. R. Dankert & J. A. Jenkins, 2004. Flow cytometric analysis of crayfish hemocytes activated by lipopolysaccharides. Fish and Shellfish Immunology 17: 223–233.

    Article  CAS  Google Scholar 

  • Clare, A. S. & K. Matsumura, 2000. Nature and perception of barnacle settlement pheromones. Biofouling 15: 57–71.

    Article  CAS  Google Scholar 

  • De Bacchetti, G. T., L. Khandeparker, A. C. Anil, E. Mesbahi, J. Burgess & A. S. Clare, 2012. Characterisation of the bacteria associated with barnacle, Balanus amphitrite, shell and their role in gregarious settlement of cypris larvae. Journal of Experimental Marine Biology and Ecology 413: 7–12.

    Article  Google Scholar 

  • Desai, D. V. & A. C. Anil, 2002. Comparison of nutritional status of field and laboratory reared Balanus amphitrite Darwin (Cirripedia: Thoracica) larvae and implication of starvation. Journal of Experimental Marine Biology and Ecology 280: 117–134.

    Article  Google Scholar 

  • Desai, D. V. & A. C. Anil, 2005. Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. Journal of the Marine Biological Association of the United Kingdom 85: 909–920.

    Article  Google Scholar 

  • Dickinson, G. H., I. E. Vega, K. J. Wahl, B. Orihuela, V. Beyley, E. N. Rodriguez, R. K. Everett, J. Bonaventura & D. Rittschof, 2009. Barnacle cement: a polymerization model based on evolutionary concepts. Journal of Experimental Biology 212: 3499–3510.

    Article  CAS  Google Scholar 

  • Dreanno, C., K. Matsumura, N. Dohmae, K. Takio, H. Hirota, R. R. Kirby & A. S. Clare, 2006a. A novel α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proceedings of the National Academy of Sciences of the United States of America 103(39): 14396–14401.

    Article  CAS  Google Scholar 

  • Dreanno, C., R. R. Kirby & A. S. Clare, 2006b. Locating the barnacle settlement pheromone: spatial and ontogenetic expression of the settlement-inducing protein complex of Balanus amphitrite. Proceedings of the Royal Society B: Biological Sciences 273(1602): 2721–2728.

    Article  CAS  Google Scholar 

  • Dobretsov, S., H. U. Dahms & P. Y. Qian, 2006. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22: 43–54.

    Article  CAS  Google Scholar 

  • Eswaran, R. & L. Khandeparker, 2014. Algal epibiosis on Megabalanus tintinnabulum and its role in segregation of the Balanus amphitrite population. Marine Ecology 35: 492–505.

    Article  CAS  Google Scholar 

  • Fujii, S., T. Nishiura, A. Nishikawa, R. Miura & N. Taniguchi, 1990. Structural heterogeneity of sugar chains in immunoglobulin G. Conformation of immunoglobulin G molecule and substrate specificities of glycosyltransferases. Journal of Biological Chemistry 265: 6009–6018.

    CAS  PubMed  Google Scholar 

  • Hose, J. E., G. G. Martin & A. S. Gerard, 1990. A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biological Bulletin 178: 33–45.

    Article  CAS  Google Scholar 

  • Hung, O. S., V. Thiyagarajan & P. Y. Qian, 2008. Preferential attachment of barnacle larvae to natural multi-species biofilms: does surface wettability matter? Journal of Experimental Marine Biology and Ecology 361: 36–41.

    Article  Google Scholar 

  • Ivanina, A. V., H. I. Falfushynska, E. Beniash, H. Piontkivska & I. M. Sokolova, 2017. Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas. Journal of Experimental Biology 220: 3209–3221.

    Article  Google Scholar 

  • Jiravanichpaisal, P., B. L. Lee & K. Söderhäll, 2006. Cell mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211: 213–236.

    Article  CAS  Google Scholar 

  • Johansson, M. W. & K. Söderhäll, 1989. Cellular immunity in crustaceans and the proPO system. Parasitology Today 5: 171–176.

    Article  CAS  Google Scholar 

  • Johansson, M. W., P. Keyser, K. Sritunyalucksana & K. Söderhäll, 2000. Crustacean hemocytes and haematopoiesis. Aquaculture 191: 45–52.

    Article  CAS  Google Scholar 

  • Kamino, K., 2010. Absence of cross-linking via trans-glutaminase in barnacle cement and redefinition of the cement. Biofouling 26(7): 755–760.

    Article  CAS  Google Scholar 

  • Kamiya, H., K. Muramoto & R. Goto, 1987. Isolation and characterization of agglutinins from the hemolymph of an acorn barnacle, Megabalanus volcano. Development and Comparative Immunology 11(2): 297–307.

    Article  CAS  Google Scholar 

  • Kamiya, H., M. Jimbo, H. Yako, K. Muramoto, O. Nakamura, R. Kado & T. Watanabe, 2002. Participation of the C-type hemolymph lectin in mineralization of the acorn barnacle Megabalanus rosa. Marine Biology 140: 1235–1240.

    Article  CAS  Google Scholar 

  • Kato-Yoshinaga, Y., M. Nagano, S. Moris, A. S. Clare, N. Fusetani & K. Matsumura, 2000. Species specificity of barnacle settlement-inducing proteins. Comparative Biochemistry and Physiology A 125(4): 511–516.

    Article  CAS  Google Scholar 

  • Khandeparker, L. & A. C. Anil, 2011. Role of conspecific cues and sugars in the settlement of cyprids of the barnacle, Balanus amphitrite. Journal of Zoology 284(3): 206–214.

    Article  Google Scholar 

  • Khandeparker, L., A. C. Anil & S. Raghukumar, 2002a. Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite. Aquatic Microbial Ecology 28: 37–54.

    Article  Google Scholar 

  • Khandeparker, L., A. C. Anil & S. Raghukumar, 2002b. Exploration and metamorphosis in Balanus amphitrite Darwin (Cirripedia;Thoracica) cyprids: significance of sugars and adult extract. Journal of Experimental Marine Biology and Ecology 281: 77–88.

    Article  Google Scholar 

  • Khandeparker, L., A. C. Anil & S. Raghukumar, 2003. Barnacle larval destination: piloting possibilities by bacteria and lectin interaction. Journal of Experimental Marine Biology and Ecology 289(1): 1–13.

    Article  Google Scholar 

  • Khandeparker, L., A. C. Anil & S. Raghukumar, 2006. Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS Microbiology Ecology 58(3): 425–438.

    Article  CAS  Google Scholar 

  • Kirchman, D., S. Graham, D. Reish & R. Mitchell, 1982. Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). Journal of Experimental Marine Biology and Ecology 56: 153–163.

    Article  Google Scholar 

  • Larman, V. N., P. A. Gabbott & J. East, 1982. Physico-chemical properties of the settlement factor proteins from the barnacle Balanus balanoides. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology 72: 329–338.

    Article  Google Scholar 

  • Liener, I. E., N. Sharon & I. J. Goldstein, 1986. The Lectins: Properties, Functions, and Applications in Biology and Medicine. Academic Press, Orlando.

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Farr & R. J. Randall, 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Maruzzo, D., N. Aldred, A. S. Clare & J. T. Høeg, 2012. Metamorphosis in the cirripede crustacean Balanus amphitrite. PLoS ONE 7(5): e37408.

    Article  CAS  Google Scholar 

  • Maki, J. S., D. Rittschof & R. Mitchell, 1992. Inhibition of larval barnacle attachment to bacterial films: an investigation of physical properties. Microbial Ecology 23: 97–106.

    Article  CAS  Google Scholar 

  • Matsumura, K., M. Nagano & N. Fusetani, 1998a. Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite. Journal of Experimental Zoology 281: 12–20.

    Article  Google Scholar 

  • Matsumura, K., M. Nagano, Y. Kato-Yoshinaga, M. Yamazaki, A. S. Clare & N. Fusetani, 1998b. Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions. Proceedings of the Royal Society of London. Series B 265: 1825–1830.

  • Mizuochi, T., T. Taniguchi, A. Shimizu & A. Kobata, 1982. Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. Journal of Immunology 129: 2016–2020.

    CAS  Google Scholar 

  • Owens, L. & A. O’Neill, 1997. Use of a clinical flow cytometer for differential counts of prawn Penaeus monodon hemocytes. Diseases of Aquatic Organisms 31: 147–153.

    Article  Google Scholar 

  • Qian, P. Y., V. Thiyagarajan, S. C. K. Lau & S. C. K. Cheung, 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquatic Microbial Ecology 33: 225–237.

    Article  Google Scholar 

  • Raju, T. S., J. B. Briggs, S. M. Borge & A. J. Jones, 2000. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5): 477–486.

    Article  CAS  Google Scholar 

  • Relf, J. M., J. R. F. Chisholm, G. D. Kemp & V. J. Smith, 1999. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular hemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry 264: 350–357.

    Article  CAS  Google Scholar 

  • Rittschof, D. & J. H. Cohen, 2004. Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25: 1503–1516.

    Article  CAS  Google Scholar 

  • Rittschof, D., E. S. Branscomb & J. D. Costlow, 1984. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. Journal of Experimental Marine Biology and Ecology 82: 131–146.

    Article  Google Scholar 

  • Sahoo, G. & L. Khandeparker, 2018. Role of epibiotic diatoms isolated from the barnacle shell in the cyprid metamorphosis of Balanus amphitrite. Hydrobiologia. https://doi.org/10.1007/s10750-018-3668-y.

    Article  Google Scholar 

  • Shapiro, H. M., 2003. Practical flow cytometry. Wiley, Hoboken, New Jersey.

    Book  Google Scholar 

  • Shibuya, N., I. J. Goldstein, E. J. M. Van Damme & W. J. Peumans, 1988. Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. The Journal of Biological Chemistry 263(2): 728–734.

    CAS  PubMed  Google Scholar 

  • Söderhäll, K. & V. J. Smith, 1983. Separation of the haemocyte population of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Development and Comparative Immunology 7: 229–239.

    Article  Google Scholar 

  • Sutton, B. J. & D. C. Phillips, 1983. The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G. Biochemical Society Transactions 11: 130–132.

    Article  CAS  Google Scholar 

  • Travers, M. A., P. M. da Silva, N. LeGoic, D. Mavie, A. Donual, S. Huchette, M. Koken & C. Paillard, 2008. Morphologic, cytometric and functional characterization of abalone (Haliotis tuberculata) hemocytes. Fish and Shellfish Immunology 24: 400–411.

    Article  CAS  Google Scholar 

  • Unabia, C. R. C. & M. G. Hadfield, 1999. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Marine Biology 133: 55–64.

    Article  Google Scholar 

  • Waite, M. E. & G. Walker, 1988. The hemocytes of balanomorph barnacles. Journal of Marine Biological Association of United Kingdom 68: 391–397.

    Article  Google Scholar 

  • White, K. N. & G. Walker, 1981. Uptake, accumulation and excretion of zinc by the barnacle, Balanus balanoides (L.). Journal of Experimental Marine Biology and Ecology 51(2–3): 285–298.

    Article  CAS  Google Scholar 

  • Walmsley, T. A., G. F. Matcher, F. Zhang, R. T. Hill, M. T. Davies-Coleman & R. A. Dorrington, 2012. Diversity of bacterial communities associated with the Indian Ocean sponge Tsitsikamma favus that contains the bioactive Pyrroloiminoquinones, Tsitsikammamine A and B. Marine Biotechnology 14: 681–691.

    Article  CAS  Google Scholar 

  • Wang, Y., M. Hu, Q. Li, J. Li, D. Lin & W. Lu, 2014. Immune toxicity of TiO 2 under hypoxia in the green-lipped mussel Perna viridis based on flow cytometric analysis of hemocyte parameters. Science of the Total Environment 470: 791–799.

    Article  Google Scholar 

  • Xue, Q. G., T. Renault & S. Chilmonczyk, 2001. Flow cytometric assessment of haemocyte sub-populations in the European flat oyster, Ostrea edulis, hemolymph. Fish and Shellfish Immunology 11: 557–567.

    Article  CAS  Google Scholar 

  • Yamamoto, K., Y. Konami & T. Irimura, 1997. Sialic acid-binding motif of Maackia amurensis lectins. The Journal of Biochemistry 121(4): 756–761.

    Article  CAS  Google Scholar 

  • Zar, J. H., 1996. Biostatistical analysis, 3rd ed. Prentice-Hall Inc., Upper Saddle River, New Jersey.

    Google Scholar 

Download references

Acknowledgements

We thank the Director of CSIR-National Institute of Oceanography for providing the facilities and support. This work was supported by the Council of Scientific and Industrial Research (CSIR)-funded Ocean Finder Program (PSC0105). This is NIO contribution 6332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidita Khandeparker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Iacopo Bertocci

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2018_3868_MOESM1_ESM.mp4

File 1. A video showing the Z sectioning of the cyprid stained with FITC conjugated Concanavalin and TRITC conjugated Glycine max. Both the lectins show identical binding sites in the vicinity of the nervous system. Supplementary material 1 (AVI 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandeparker, L., Anil, A.C. & Desai, D.V. Immuno-modulation of settlement cues in the barnacle, Amphibalanus amphitrite: significance of circulating haemocytes. Hydrobiologia 830, 229–241 (2019). https://doi.org/10.1007/s10750-018-3868-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3868-5

Keywords

Navigation