Skip to main content
Log in

Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

It is important to predict how phytoplankton will respond to global warming, as changes in their composition can affect ecosystem functions. We evaluated the effect of water warming on the taxonomic and functional composition of phytoplankton and on chemical characteristics that affect their occurrence, such as dissolved oxygen, pH and conductivity. Microcosms were constructed outdoors and monitored over time. The temperature was manipulated to simulate different scenarios predicted for the future. Warming caused a reduction in dissolved oxygen, while the pH and conductivity remained unchanged. We found a joint effect of temperature and time on chlorophyll-a as well as on the species and functional groups. The substitution of species and groups occurred in a similar way between treatments. However, a greater number of Cyanophyceae individuals were found at higher temperatures, while Bacillariophyceae and Euglenophyceae species were found more commonly in the lower warming treatments. These results indicate that warming altered the taxonomic and functional composition of phytoplankton, causing species substitution as well as a change in their functional characteristics, which led to the predominance of small organisms. Thus, contribute to predicting how an increase in temperature might alter the patterns of dominance, homogenization and community dynamics in future warming scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, G. L., D. E. Pichler, E. J. Cox, E. O’Gorman, A. Seeney, G. Woodward & D. C. Reuman, 2013. Diatoms can be important exception to temperature-size rules at species and community levels of organization. Global Change Biology 19: 3540–3552.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, N. J., 2000. Miniview: diatoms, temperature and climatic change. European Journal of Phycology 35: 307–314.

    Google Scholar 

  • Becker, V., L. Caputo, J. Ordóñes, R. Marcé, L. O. Crossetti & V. L. M. Huszar, 2010. Driving factors of the phytoplankton functional groups in a deep mediterranean reservoir. Water Research 44: 3345–3354.

    CAS  PubMed  Google Scholar 

  • Bellinger, E. G. & D. C. Sigee, 2010. Freshwater algae: Identification and use as bioindicators. Wiley Blackwell, United Kingdom.

    Google Scholar 

  • Berger, W. H. & F. L. Parker, 1971. Diversity of planktonic foraminifera in deep-sea sediments. Science 168: 1345–1347.

    Google Scholar 

  • Bertani, I., R. Primicerio & G. Rossetti, 2016. Extreme climatic event triggers a lake regime shift that propagates across multiple trophic levels. Ecosystems 19: 16–31.

    Google Scholar 

  • Brasil, J. & V. L. M. Huszar, 2011. O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis 15: 799–834.

    Google Scholar 

  • Broady, P. A. & F. Merican, 2012. Phylum Cyanobacteria, blue-green bacteria, blue-green algae. In Gordon, D. P. (ed.), New Zealand Inventory of Biodiversity: Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi. Canterbury University Press, New Zealand: 50–69.

    Google Scholar 

  • Burgmer, T. & H. Hillebrand, 2011. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120: 922–933.

    Google Scholar 

  • Callieri, C., 2017. Synechococcus plasticity under environmental changes. Microbiology Letters 364: 229.

    Google Scholar 

  • Carneiro, F. M., J. C. Nabout, L. C. G. Vieira, F. Roland & L. M. Bini, 2014. Determinants of chlorophyll-a concentration in tropical reservoirs. Hydrobiologia 740: 89–99.

    CAS  Google Scholar 

  • Carter, C. M., A. H. Ross, D. R. Schiel, C. Howard-Williams & B. Hayden, 2005. In situ microcosm experiments on the influence of nitrate and light on phytoplankton community composition. Journal of Experimental Marine Biology and Ecology 326: 1–13.

    CAS  Google Scholar 

  • Chen, B., 2015. Patterns of thermal limits of phytoplankton. Journal of Plankton Research 37: 285–292.

    Google Scholar 

  • Core Team R, 2016. R: a language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 September 2017.

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. PNAS 106: 12788–12793.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz, R. J. & D. L. Breitburg, 2009. The hypoxic environment. In Richards, J., A. Farrell & C. Brauner (eds), Fish Physiology: Hypoxia. Academic Press, Cambridge: 1–23.

    Google Scholar 

  • Dong, J., W. Zhou, L. Song & G. Li, 2015. Responses of phytoplankton functional groups to simulated winter warming. International Journal of Limnology Annales de Limnologie 51: 199–210.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Ekvall, M. K. & L. A. Hanson, 2012. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions. PLoS ONE 7: e44614.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esteves, F. A., 2011. Princípios de Limnologia, 3rd ed. Interciência, Rio de Janeiro.

    Google Scholar 

  • Feuchtmayr, H., D. McKee, I. F. Harvey, D. Atkinson & B. Moss, 2007. Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks. Hydrobiologia 584: 425–432.

    CAS  Google Scholar 

  • Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal Applied Ecology 46: 713–723.

    Google Scholar 

  • Field, C. B., M. J. Behrenfeld, J. T. Randerson & P. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.

    CAS  PubMed  Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.

    CAS  Google Scholar 

  • Flury, S., D. F. McGinnis & M. O. Gessner, 2010. Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment. Journal of Geophysical Research 115: G01007.

    Google Scholar 

  • Fogg, G. E., 2001. Algal adaptation to stress – some general remarks. In Rai, L. C. & J. P. Gaur (eds), Algal Adaptation to Environmental Stress. Springer, Berlin: 1–19.

    Google Scholar 

  • Fu, F. X., M. E. Waner, Y. Zhang, Y. Feng & D. A. Hutchins, 2007. Effects of increase temperature and CO2 on photosynthesis, growth, and eçemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43: 485–496.

    Google Scholar 

  • Geraldes, P., C. Pascoal & F. Cássio, 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5: 734–740.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwaters. Blackwell Scientific Publication, Oxford.

    Google Scholar 

  • González, J., E. Fernández, F. G. Figueiras & M. Varela, 2013. Subtle effects of the water soluble fraction of oil spills on natural phytoplankton assemblages enclosed in mesocosms. Estuarine, Coastal and Shelf Science 124: 13–23.

    Google Scholar 

  • Granéli, E., N. K. Vidyrathna, E. Furani, P. R. T. Cumaranatunga & R. Scenati, 2011. Can increases in temperature stimulate blooms of the toxic benthic dinoflagellate Ostreopsis ovata? Harmful Algae 10: 165–172.

    Google Scholar 

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patters, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    PubMed  Google Scholar 

  • Hennemann, M. C. & M. M. Petrucio, 2010. Seasonal phytoplankton response to increase temperature and phosphorus inputs in freshwater coastal lagoon, Southern Brazil: a microcosm bioassay. Acta Limnologica Brasiliensia 22: 295–305.

    Google Scholar 

  • Hoang, H. T. T., T. T. Duong, K. T. Nguyen, Q. T. P. Le, M. T. N. Luu, D. A. Trinh, A. H. Le, C. T. Ho, K. D. Dang, J. Némery, D. Orange & J. Klein, 2018. Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam). Environmental Monitoring and Assessment 190: 67.

    PubMed  Google Scholar 

  • Hofmann, G. E. & A. E. Todgham, 2010. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology 72: 127–145.

    CAS  PubMed  Google Scholar 

  • Huertas, E., M. Rouco, V. López-Rodas & E. Costas, 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B 278: 3534–3543.

    PubMed  PubMed Central  Google Scholar 

  • IPCC. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of IPCC. Switzerland, Geneva.

  • Javaheri, N., R. Dries, A. Burson, L. J. Stal, P. M. A. Sloot & J. A. Kaandorp, 2015. Temperature affects the silicate morphology in a diatom. Nature Scientific Reports 5: 116–152.

    Google Scholar 

  • Jeppesen, E., B. Kronvang, M. Meerho, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridisen, L. Liboriussen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological sate, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.

    CAS  PubMed  Google Scholar 

  • Jeppesen, E., B. Moss, H. Bennion, L. Carvalho, L. DeMeester, H. Feuchtmayr, N. Friberg, M. O. Gessner, M. Hefting, T. L. Lauridsen, L. Liboriussen, H. J. Malmquist, L. May, M. Meerhoff, J. S. Olafsson, M. B. Soons & J. T. A. Verhoeven, 2010. Interaction of climate change and eutrophication. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Blackwell, Hoboken: 120–151.

    Google Scholar 

  • Jeppesen, E., M. Meerhoff, T. A. Davidson, D. Trolle, M. Søndergaard, T. L. Lauridsen, M. Beklioglu, S. Brucet, P. Volta, I. González-Bergonzoni & A. Nielsen, 2014. Climate change impacts on lakes: an integrate ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 84–107.

    Google Scholar 

  • Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. Donk, L. A. Hansson, E. Jeppesen, K. Kruk, G. Lacerot, N. Mazzeo, L. Meester, B. Moss, M. Lürling, T. Nõges, S. Romo & M. Scheffer, 2012. Warming climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Google Scholar 

  • Kratina, P., H. S. Greig, P. L. Thompson, T. S. A. Carvalho-Pereira & J. B. Shurin, 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93: 1421–1430.

    PubMed  Google Scholar 

  • Kremer, C. T., M. K. Thomas & E. Litchman, 2017. Temperature and size scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnology and Oceanography 62: 1658–1670.

    Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lu, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Google Scholar 

  • Kruk, C., E. T. H. M. Peeters, E. H. Van Ness, V. L. M. Huszar, L. S. Costa & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography 56: 110–118.

    Google Scholar 

  • Kruk, C., A. M. Segura, E. T. H. M. Peeters, V. L. M. Huszar, L. S. Costa, S. Kosten, G. Lacerot & M. Scheffer, 2012. Phytoplankton species predictability increases towards warmer regions. Limnology and Oceanography 57: 1126–1135.

    Google Scholar 

  • Larson, C. A. & G. E. Belovsky, 2013. Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt lake, Utah, USA. Journal of Plankton Research 35: 1154–1166.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science, Amsterdam.

    Google Scholar 

  • Lewandowska, A. & U. Sommer, 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series 405: 101–111.

    CAS  Google Scholar 

  • Lima-Ribeiro, M. S., S. Varela, J. González-Hernández, G. Oliveira, J. A. F. Diniz-Filho & L. C. Terribile, 2015. EcoClimate: a database of climate data from multiple models for past, present, and future for Macro ecologists and Biogeographers. Biodiversity Informatics 10: 1–21.

    Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

    Google Scholar 

  • Litchman, E., K. F. Edwards, C. A. Klausmeier & M. K. Thomas, 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress Series 470: 235–248.

    Google Scholar 

  • Liu, X., X. Lu & Y. Chen, 2011. The effects of temperature and nutrient ratios on Microcystis blooms in lake Taihu, China: an 11-year investigation. Harmful Algae 10: 337–343.

    Google Scholar 

  • Lurgi, M., B. C. López & J. M. Montoya, 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society B 367: 2913–2922.

    Google Scholar 

  • Lurling, M., F. Eshetu, E. J. Faassen, S. Kosten & V. L. M. Huszar, 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58: 552–559.

    Google Scholar 

  • McKee, D., D. Atkinson, S. Collings, J. Eaton, L. Wolstenholme & B. Moos, 2000. Heated aquatic microcosms for climate change experiments. Freshwater Forum 14: 51–58.

    Google Scholar 

  • McKee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish and elevated temperature during winter and summer. Limnology and Oceanography 48: 707–722.

    Google Scholar 

  • Montagnes, D. J. S. & D. J. Franklin, 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography 46: 2008–2018.

    CAS  Google Scholar 

  • Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heys & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Google Scholar 

  • Moss, R., M. Babiker, S. Brinkman, E. Calvo, T. Cater, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, R. Jones, M. Kainuma, J. Kelleher, J. F. Lamarque, M. Manning, N. Nakicenovic, B. O’Neill, R. Pichs, K. Riahi, S. Rose, R. Stouffer, D. V. Vuuren, J. Weyant, T. Wilbanks, J. P. V. Ypersele & M. Zurek, 2008. Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. Technical Summary. Intergovernmental Panel on Climate Change, Geneva.

  • Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. V. Vuuren, T. R. Carter, S. Emori, M. Kainuma, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M. Thomson, J. P. Weyant & T. J. Wilbanks, 2010. The next generation of scenarios for climate change research and assessment. Nature 463: 747–756.

    CAS  PubMed  Google Scholar 

  • Moura, M. E. P., L. S. Rocha & J. C. Nabout, 2017. Effects of global climate change on chlorophyll-a concnetrations in a tropical aquatic system during a cyanobacterial blomm: a microcosm study. Ambiente & Água 12: 390–404.

    Google Scholar 

  • Nabout, J. C. & I. S. Nogueira, 2007. Spatial and temporal dynamics of phytoplankton functional group in a blocked valley (Brazil). Acta Limnologica Brasiliensia 19: 305–314.

    Google Scholar 

  • Nicolle, A., P. Hallgren, J. V. Einem, E. S. Kritzberg, W. Granéli, A. Persson & L. A. Hansson, 2012. Predict warming and browning affect timing and magnitude of plankton phonological events in lakes: a mesocosm study. Freshwater Biology 57: 684–695.

    Google Scholar 

  • Nogueira, P., R. B. Domingues & A. B. Barbosa, 2014. Are microcosm volume and sample pre-filtration relevant to evaluate phytoplankton growth? Journal of Experimental Marine Biology and Ecology 461: 323–330.

    Google Scholar 

  • O’Conner, M. I., M. F. Piehler, D. M. Leech, A. Anton & J. F. Bruno, 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biology 7: e1000178.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2017. Vegan: Community Ecology Package. R Package Version 2.4-4. http://CRAN.R-project.org/package=vegan. Accessed 15 September 2017.

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and minuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    CAS  PubMed  Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecology 65: 995–1010.

    CAS  PubMed  Google Scholar 

  • Pulina, S., A. Brutemark, B. M. Padedda, L. M. Grubisic, C. T. Satta, T. Caddeo, P. Farina, N. Sechi & A. Lugliè, 2016. Effects of warming on a Mediterranean phytoplankton community. Web Ecology 16: 89–92.

    Google Scholar 

  • Rasconi, S., K. Winter & M. J. Kainz, 2017. Temperature increase anf fluctuation induce phytoplankton biodiversity loss – Evidence from a multi-seasonal mesocosm experiment. Ecology and Evolution. https://doi.org/10.1002/ece3.2889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578: 37–45.

    Google Scholar 

  • Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Google Scholar 

  • Reznick, D., M. J. Bryant & F. Bashey, 2002. R- and K- selection revisited: the role of population regulation in the life-history evolution. Ecology 83: 1509–1520.

    Google Scholar 

  • Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.

    CAS  Google Scholar 

  • Santos, A. M. C., F. M. Carneiro & M. V. Cianciaruso, 2014. Predicting productivity in tropical reservoirs: the roles of phytoplankton taxonomic and functional diversity. Ecological Indicators 48: 428–435.

    Google Scholar 

  • Segura, A. M., F. Sarthou & C. Kruk, 2018. Morphology-based differences in the thermal response of freshwater phytoplankton. Biology Letters 14: 20170790.

    PubMed  PubMed Central  Google Scholar 

  • Senerpont Domis, L., W. M. Mooij & J. Huisman, 2007. Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584: 403–413.

    Google Scholar 

  • Senerpont Domis, L. N., A. S. G. Elser, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. V. Donk, M. Winder & M. Lurling, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.

    Google Scholar 

  • Simehgo. 2017. Sistema de Metereologia e Hidrologia do Estado de Goiás. Available in http://www.simehgo.sectec.go.gov.br/. Accessed 20 August 2017.

  • Sommer, U. & A. Lewandowska, 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17: 154–162.

    Google Scholar 

  • Sommer, U., C. Paul & M. Moustaka-Gouni, 2015. Warming and ocean acidification effects on phytoplankton – From species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 10: e0125239.

    PubMed  PubMed Central  Google Scholar 

  • Staehr, P. A. & M. J. Birkeland, 2006. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologya 45: 648–656.

    Google Scholar 

  • Stamenkovic’, M. & D. Hanelt, 2016. Geographic distribution and ecophysiology adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: a review. Hydrobiologia 787: 1–26.

    Google Scholar 

  • Thomas, K. M., C. T. Kremer & E. Litchman, 2016. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecology and Biogeography 25: 75–86.

    Google Scholar 

  • Utermöhl, H., 1958. Zurvervoll kommung der continuousn phytoplankton-methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vollenweider, R. A., 1974. A Manual on Methods for Measuring Primary Production in Aquatic Environments. Blackwell Scientific Publications, London.

    Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophycal Transactions of the Royal Society B 365: 2093–2106.

    Google Scholar 

  • Yodzis, P., 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69: 508–515.

    Google Scholar 

  • Yvon-Durocher, G., J. M. Montoya, M. Trimmer & G. Woodward, 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17: 1681–1694.

    Google Scholar 

  • Yvon-Durocher, G., A. P. Allen, M. Cellamare, M. Dossena, K. J. Gaston, M. Leitão, J. M. Montoya, D. C. Reuman, G. Woodward & M. Trimmer, 2015. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology 13: e1002324.

    PubMed  PubMed Central  Google Scholar 

  • Yvon-Durocher, G., C. E. Schaum & M. Trimmer, 2017. The temperature dependence of phytoplankton stoichiometry: investigating the roles of species sorting and local adaptation. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.02003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zar, J. H., 2010. Biostatistical Analysis. Pearson Print Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001. JCN thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) by research productivity grant. This paper is developed in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNpq (proc. 465610/2014-5) and Fundação de Amparo a Pesquisa do Estado de Goiás (FAPEG). We thank the colleagues at the Laboratory of Biogeography and Aquatic Ecology of the Goiás State University for help in construction and filling microcosms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Borges Machado.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File 1 (PDF 797 kb)

Supplementary File 2 (XLSX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, K.B., Vieira, L.C.G. & Nabout, J.C. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830, 115–134 (2019). https://doi.org/10.1007/s10750-018-3858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3858-7

Keywords

Navigation