Skip to main content
Log in

Effects of different intertidal hard substrates on the recruitment of Crassostrea gigas

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Physical properties, distribution, and abundance of natural hard substrates are important variables modulating the potential distribution of sessile aquatic species. In this study, we analyze the effects of the geological origin of different rock types common in intertidal environments of Argentina on the recruitment success of the nonindigenous Pacific oyster Crassostrea gigas, accounting for spatial and interannual variation. A series of experiments showed that although recruitment occurs on all of the five most widespread hard substrates in the region (i.e., pelitic mudstone, limestone, conglomeradic sabulitic sandstone, gray sandstone, and volcanic rock) it is significantly higher on pelitic mudstone. Accounting for the geographic distribution of these substrate types along the coast of Argentina, it is concluded that the Valdés Peninsula and central San Jorge Gulf areas, where pelitic mudstone outcrops are the dominant intertidal hard substrate, are the regions with highest potential for C. gigas intertidal reef formation. Pelitic mudstone displayed the highest mean values of specific heat and porosity as well as high values of luminosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/latin-america-and-the-caribbean/argentina/valdes (accessed 14.02.2018).

  2. http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/latin-america-and-the-caribbean/argentina/patagonia-azul/ (accessed 14.02.2018).

References

  • Anderson, M. J., 1996. A chemical cue induces settlement of Sydney rock oysters, Saccostrea commercialis, in the laboratory and in the field. The Biological Bulletin 190: 350–358.

    Article  CAS  Google Scholar 

  • Anderson, M. J. & S. D. Connell, 1999. Predation by fish on intertidal oysters. Marine Ecology Progress Series 187: 203–211.

    Article  Google Scholar 

  • Anderson, M. J. & C. J. F. ter Braak, 2003. Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation 73: 85–113.

    Article  Google Scholar 

  • Andreis, R. R., 1966. Petrografía y paleocorrientes de la formación Río Negro. Revista del Museo de La Plata, N.S. Geología 36: 245–310.

    Google Scholar 

  • Arakawa, K. Y., 1990. Commercially important species of oysters in the world. Marine Behaviour and Physiology 17: 1–13.

    Article  Google Scholar 

  • Baker, P. & R. Mann, 1998. Response of settling oyster larvae, Crassostrea virginica, to specific portions of the visible light spectrum. Journal of Shellfish Research 17: 1081–1083.

    Google Scholar 

  • Berthelin, C., K. Kellner & M. Mathieu, 2000. Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (West Coast of France). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 125: 359–369.

    Article  CAS  Google Scholar 

  • Bishop, M. J. & J. E. Byers, 2015. Predation risk predicts use of a novel habitat. Oikos 124: 1225–1231.

    Article  Google Scholar 

  • Borges, M.E., 2006. Ecología de las ostras en ambientes del sur bonaerense: cultivo y manejo de sus poblaciones. Doctoral Thesis, Universidad Nacional del Sur, Argentina (unpublished).

  • Boudry, P., B. Collet, F. Cornette, V. Hervouet & F. Bonhomme, 2002. High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204: 283–296.

    Article  Google Scholar 

  • Brandt, G., A. Wehrmann & K. W. Wirtz, 2008. Rapid invasion of Crassostrea gigas into the German Wadden Sea dominated by larval supply. Journal of Sea Research 59: 279–296.

    Article  Google Scholar 

  • Carl, C., A. J. Poole, B. A. Sexton, F. L. Glenn, M. J. Vucko, M. R. Williams, S. Whalan & R. De Nys, 2012. Enhancing the settlement and attachment strength of pediveligers of Mytilus galloprovincialis by changing surface wettability and microtopography. Biofouling 28: 175–186.

    Article  CAS  Google Scholar 

  • Carrasco, M. F. & P. J. Barón, 2010. Analysis of the potential geographic range of the Pacific oyster Crassostrea gigas (Thunberg, 1793) based on surface seawater temperature satellite data and climate charts: the coast of South America as a study case. Biological Invasions 12: 2597–2607.

    Article  Google Scholar 

  • Connell, J. H., 1985. The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. Journal of Experimental Marine Biology and Ecology 93: 11–45.

    Article  Google Scholar 

  • Diederich, S., 2005. Differential recruitment of introduced Pacific oysters and native mussels at the North Sea coast: coexistence possible? Journal of Sea Research 53: 269–281.

    Article  Google Scholar 

  • Diederich, S., G. Nehls, J. E. E. van Beusekom & K. Reise, 2005. Introduced Pacific oysters (Crassostrea gigas) in the northen Wadden Sea: invasion accelerated by warm summers? Helgoland Marine Research 59: 97–106.

    Article  Google Scholar 

  • Dinamani, P., 1987. Gametogenic patterns in populations of Pacific oyster, Crassostrea gigas, in Northland, New Zealand. Aquaculture 64: 65–76.

    Article  Google Scholar 

  • Dolmer, P., M. Holm, Ã. Strand, S. Lindegarth, T. Bodvin, P. Norling, & S. Mortensen, 2014. The invasive Pacific oyster, Crassostrea gigas, in Scandinavian coastal waters: A risk assessment on the impact in different habitats and climate conditions. Fisken og Havet 2: 1–67.

    Google Scholar 

  • dos Santos, E. P. & S. M. Fiori, 2010. Primer registro sobre la presencia de Crassostrea gigas (Thunberg, 1793) (Bivalvia: Ostreidae) en el estuario de Bahía Blanca (Argentina). Comunicaciones de la Sociedad Malacológica del Uruguay 9: 245–252.

    Google Scholar 

  • Dunstan, P. K. & N. J. Bax, 2007. How far can marine species go? Influence of population biology and larval movement on future range limits. Marine Ecology Progress Series 344: 15–28.

    Article  Google Scholar 

  • Dutta, S. K., V. K. Nema & R. K. Bhardwaj, 1988. Thermal properties of gram. Journal of Agricultural Engineering Research 39: 269–275.

    Article  Google Scholar 

  • Elías, I., C. Carozza, E. E. Di Giácomo, M. S. Isla, J. M. Orensanz, A. M. Parma, R. C. Pereiro, M. R. Perier, R. G. Perrotta, M. E. Ré & C. Ruarte, 2011. Coastal fisheries of Argentina. In Salas, S., R. Chuenpagdee, A. Charles & J. C. Seijo (eds), Coastal fisheries of Latin America and the Caribbean, FAO Fisheries and Aquaculture Technical Paper. No. 544.

  • Elith, J., H. C. Graham, P. Anderson, M. Dudík, S. Ferrier, A. J. Guisan, R. Hijmans, F. Huettmann, J. Leathwick, A. Lehmann, J. Li, L. Lohmann, B. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McOverton, A. Townsend Peterson, S. Phillips, K. Richardson, R. Scachetti-Pereira, R. Schapire, J. Soberón, S. Williams, M. Wisz & N. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  • Escapa, M., J. P. Isacch, P. Daleo, J. Alberti, O. Iribarne, M. Borges, E. P. dos Santos, D. A. Gagliardini & M. Lasta, 2004. The distribution and ecological effects of the introduced Pacific oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia. Journal of Shellfish Research 23: 765–772.

    Google Scholar 

  • Evans, S., M. D. Camara & C. J. Langdon, 2009. Heritability of shell pigmentation in the Pacific oyster, Crassostrea gigas. Aquaculture 286: 211–216.

    Article  Google Scholar 

  • FAO, 2005. Cultured Aquatic Species Information Programme. Crassostrea gigas. Cultured Aquatic Species Information Programme. Text by Helm, M.M. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 13 April 2005. [Accessed 5 May 2018].

  • Franklin, J., 2010. Mapping species distributions. Spatial inference and prediction. Ecology, Biodiversity and Conservation Series. Cambridge University Press, Cambridge, 318 pp.

    Book  Google Scholar 

  • Gaines, S. D. & M. Bertness, 1992. Dispersal of juveniles and variable recruitment in sessile marine species. Nature 360: 579–580.

    Article  Google Scholar 

  • Giberto, D., C. S. Bremec, L. Schejter, M. Escolar, V. Souto, A. Schariati, M. V. Romero & E. P. dos Santos, 2012. La ostra del Pacífico Crassostrea gigas (Thumberg, 1793) en la Provincia de Buenos Aires: reclutamientos naturales en la bahía Samborombón. Revista de Investigación y Desarrollo Pesquero 21: 21–30.

    Google Scholar 

  • Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Haller, M. J., C. Meister, A. J. A. Monti & N. E. Weiler, 1997. Hoja Geológica 4366-II Puerto Madryn. Agreement UNPSJB - Secretaria de Minería, Chubut.

    Google Scholar 

  • Holliday, J. E., G. L. Allan, J. Frances & L. P. Diver, 1993. Evaluation of commercially-used collectors for Sydney rock oysters, Saccostrea commercialis and Pacific oysters, Crassostrea gigas. Aquacultural Engineering 12: 63–79.

    Article  Google Scholar 

  • Kaaschieter, J. P. H., 1965. Geología de la Cuenca del Colorado. Actas de las II Jornadas Geológicas Argentinas, Salta: 251–269.

    Google Scholar 

  • Keough, M. & B. J. Downes, 1982. Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54: 348–352.

    Article  Google Scholar 

  • Kinlan, B. P. & S. D. Gaines, 2003. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84: 2007–2020.

    Article  Google Scholar 

  • Kochmann, J., C. Buschbaum, N. Volkenborn & K. Reise, 2008. Shift from native mussels to alien oysters: differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology 364: 1–10.

    Article  Google Scholar 

  • Kochmann, J., F. O’Beirn, J. Yearsley & T. P. Crowe, 2013. Environmental factors associated with invasion: modeling occurrence data from a coordinated sampling programme for Pacific oysters. Biological Invasions 15: 2265–2279.

    Article  Google Scholar 

  • Komatsu, T. & H. Maeda, 2002. Stratigraphy and fossil bivalve assemblages of the mid-Cretaceous Goshoura Group, southwest Japan. Paleontological Research 9: 119–142.

    Article  Google Scholar 

  • Korringa, P., 1976. Farming the cupped oysters of the genus Crassostrea; a multidiciplany treatise. Developments in Aquaculture and Fisheries Science, Elsevier, Amsterdam.

    Google Scholar 

  • Lee, K. M., F. R. Krassoi & M. J. Bishop, 2012. Effects of tidal elevation and substrate type on settlement and postsettlement mortality of the sydney rock oyster, Saccostrea glomerata, in a mangrove forest and on a rocky shore. Journal of Shellfish Research 31: 1043–1050.

    Article  Google Scholar 

  • Lillis, A., D. B. Eggleston & D. R. Bohnenstiehl, 2013. Oyster larvae settle in response to habitat-associated underwater sounds. PLoS ONE 8: e79337.

    Article  CAS  Google Scholar 

  • Madamba, P. S., R. H. Driscoll & K. A. Buckle, 2007. Models for the specific heat and thermal conductivity of garlic. Drying Technology 13: 295–317.

    Article  Google Scholar 

  • Malvicini, L. & E. Llambías, 1974. Geología y génesis del depósito de manganeso Arroyo Verde, Provincia del Chubut, República Argentina. Actas II del 5° Congreso Geológico Argentino, Villa Carlos Paz, Córdoba, Argentina, pp. 185–202.

  • Mann, R., (Ed.), 1979. Exotic species in mariculture: proceedings of a Symposium on Exotic Species in Mariculture; case histories of the Japanese oyster, Crassostrea gigas (Thunberg), with implications for other fisheries, held at Woods Hole Oceanographic Institution, Woods Hole, September 18–20, 1978. MIT Press, Cambridge.

  • Market, A., W. Esser, D. Frank, A. Wehrmann & K.-M. Exo, 2013. Habitat change by the formation of alien Crassostrea-reefs in the Wadden Sea and its role as feeding sites for waterbirds. Estuarine, Coastal and Shelf Science 131: 41–51.

    Article  Google Scholar 

  • Melo, C. M. R., F. C. Silva, C. H. A. M. Gomes, A. M. Sole-Cava & C. Lazoski, 2010. Crassostrea gigas in natural oyster banks in southern Brazil. Biological Invasions 12: 441–449.

    Article  Google Scholar 

  • Mitchell, I., C. Crawford & A. Jones, 2000. Natural heritage trust final report: distribution of feral Pacific oysters and environmental conditions. Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Taroona, Tas, 70 pp.

    Google Scholar 

  • Moysey, E. B., J. T. Shaw & W. P. Lampman, 1977. The effect of temperature and moisture on the thermal properties of rapeseed. Transactions of the American Society of Agricultural and Biological Engineers 20: 461–464.

    Article  Google Scholar 

  • Orensanz, J. M., E. Schwindt, G. Pastorino, A. Bortolus, G. Casas, G. Darrigran, R. Elías, J. J. L. Gappa, S. Obenat, M. Pascual, P. Penchaszadeh, M. L. Piriz, F. Scarabino, E. D. Spivak & E. A. Vallarino, 2002. No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biological Invasions 4: 115–143.

    Article  Google Scholar 

  • Padilla, D. K., 2010. Context-dependent impacts of a non-native ecosystem engineer, the Pacific oyster Crassostrea gigas. Integrative and Comparative Biology 50: 213–225.

    Article  Google Scholar 

  • Parker, I. M., D. Simberloff, W. M. Lonsdale, K. Goodell, M. Wonham, P. M. Kareiva, M. H. Willamson, B. Von Holle, P. B. Moyle, J. E. Byers & L. Goldwasser, 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 3–19.

    Article  Google Scholar 

  • Quan, W., R. Fan, Y. Wang & A. T. Humphries, 2017. Long-term oyster recruitment and growth are not influenced by substrate type in China: implications for sustainable oyster reef restoration. Journal of Shellfish Research 36: 79–86.

    Article  Google Scholar 

  • Quayle, D. B., 1988. Pacific oyster culture in British Columbia. Canadian Bulletin of Fisheries and Aquatic Sciences 218: 1–24.

    Google Scholar 

  • R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Reise, K., 1998. Pacific oysters invade mussel beds in the European Wadden Sea. Senckenbergiana Maritima 28: 167–175.

    Article  Google Scholar 

  • Reise, K., C. Buschbaum, H. Buttger & K. M. Wegner, 2017. Invading oysters and native mussels: from hostile takeover to compatible bedfellows. Ecosphere 8: e01949.

    Article  Google Scholar 

  • Richter, S. J. & M. H. McCann, 2007. Multiple comparison of medians using permutation tests. Journal of Modern Applied Statistical Methods 6: 399–412.

    Article  Google Scholar 

  • Robinson, A., 1992. Gonadal cycle of Crassostrea gigas kumamoto (Thunberg) in Yaquina Bay, Oregon and optimum conditions for broodstock oysters and larval culture. Aquaculture 106: 89–97.

    Article  Google Scholar 

  • Robinson, L. M., J. Elith, A. J. Hobday, R. G. Pearson, B. E. Kendall, H. P. Possingham & A. J. Richardson, 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20: 789–802.

    Article  Google Scholar 

  • Roughgarden, J., S. Gaines & H. Possingham, 1988. Recruitment dynamics in complex life cycles. Science 241: 1460–1466.

    Article  CAS  Google Scholar 

  • Ruesink, J. L., 2007. Biotic resistance and facilitation of a nonnative oyster on rocky shores. Marine Ecology Progress Series 331: 1–9.

    Article  Google Scholar 

  • Ruesink, J. L., H. S. Lenihan, A. C. Trimble, K. W. Heiman, F. Micheli, J. E. Byers & M. C. Kay, 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annual Review of Ecology, Evolution, and Systematics 36: 643–689.

    Article  Google Scholar 

  • Saucedo, P. E., H. Bervera-Leon, M. Monteforte, P. C. Southgate & P. Monsalvo-Spencer, 2005. Factors influencing recruitment of hatchery reared pearl oyster (Pinctada mazatlanica; Hanley 1856) spat. Journal of Shellfish Research 24: 215–219.

    Article  Google Scholar 

  • Sharma, D. K. & T. L. Thompson, 1973. Specific-heat and thermal-conductivity of sorghum. Transactions of the American Society of Agricultural and Biological Engineers 16: 114–117.

    Article  Google Scholar 

  • Shpigel, M., B. J. Barber & R. Mann, 1992. Effects of elevated temperature on growth, gametogenesis, physiology, and biochemical composition in diploid and triploid Pacific oysters, Crassostrea gigas, Thunberg. Journal of Experimental Marine Biology and Ecology 161: 15–25.

    Article  Google Scholar 

  • Soniat, T. M. & G. M. Burton, 2005. A comparison of the effectiveness of sandstone and limestone as cultch for oysters, Crassostrea virginica. Journal of Shellfish Research 24: 483–485.

    Article  Google Scholar 

  • Soudant, P., K. Van Ryckeghem, Y. Marty, J. Moal, J. F. Samain & P. Sorgeloos, 1999. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster (Crassostrea gigas). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 123: 209–222.

    Article  Google Scholar 

  • Su, Z., H. Liangmin, Y. Yan & H. Li, 2007. The effect of different substrates on pearl oyster Pinctada martensii (Dunker) larvae settlement. Aquaculture 271: 377–383.

    Article  Google Scholar 

  • Tamburri, M. N., R. K. Zimmer-Faust & M. L. Tamplin, 1992. Natural sources and properties of chemical inducers mediating settlement of oyster larvae: a re-examination. Biological Bulletin 183: 327–338.

    Article  CAS  Google Scholar 

  • Tang, J., S. Sokhansanj, S. Yannacopoulos & S. O. Kasap, 1991. Specific heat capacity of lentil seeds by differential scanning calorimetry. Transactions of the American Society of Agricultural and Biological Engineers 34: 517–522.

    Article  Google Scholar 

  • Travis, J. M. & C. Dytham, 1999. Habitat persistence, habitat availability and the evolution of dispersal. Proceedings of the Royal Society of London. Series B: Biological Sciences 266: 723–728.

    Article  Google Scholar 

  • Troost, K., 2010. Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster (Crassostrea gigas) in continental NW European estuaries. Journal of Sea Research 64: 145–165.

    Article  Google Scholar 

  • Venerus, L. A. & P. V. Cedrola, 2017. Review of marine recreational fisheries regulations in Argentina. Marine Policy 81: 202–210.

    Article  Google Scholar 

  • Wang, J., K. Chrisoffersen, S. Buck & Y. Tao, 2007. The Pacific oyster (Crassostrea gigas) in the Isefjord, Doctoral Thesis, Roskilde University, Denmark.

  • Waser, A. M., W. Splinter & J. Van der Meer, 2015. Indirect effects of invasive species affecting the population structure of an ecosystem engineer. Ecosphere 6: 109.

    Article  Google Scholar 

  • Whitman, E. R. & M. A. Reidenbach, 2012. Effect of benthic flow environments on recruitment of Crassostrea virginica larvae to an intertidal oyster reef habitat. Marine Ecology Progress Series 463: 177–191.

    Article  Google Scholar 

  • Wilcke, J. C., 1781. Om eldensspecifica myckenhet uti fastakroppar, och des afmätande. Kongliga Svenska Vetenskaps Academiens Handlingar 2: 49–78.

    Google Scholar 

  • Wiltshire, J. H., 2007. Ecophysiological tolerances of the Pacific oyster, Crassostrea gigas, with regard to the potential spread of populations in South Australian waters. SARDI Research Report Series 222, Adelaide.

  • Wolff, W. J. & K. Reise, 2002. Oyster imports as a vector for the introduction of alien species into northern and western European coastal waters. In Leppäkoski, E., S. Gollasch & S. Olenin (eds), Invasive aquatic species of Europe. Distribution, impacts and management. Springer, Netherlands: 193–205.

    Chapter  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memories of José María “Lobo” Orensanz (CENPAT) and Norberto “Cacho” Arcella. We express our sincere gratitude to Manfred Relling, Tomás Barón, Nicolás Sarrá, Andrea Laumann, Pablo Fimpel, Angos family (Bahía San Blas), Betty Arcella, and Mónica Burguener for their collaboration in field work. Also, we thank Mariano Coscarella (CESIMAR, CONICET), Fernando Hidalgo (Universidad Nacional de Mar del Plata, Argentina), the Handling Editor, and the Associate Editor-in-Chief of Hydrobiologia, and an anonymous reviewer for their comments on an earlier draft of the manuscript. This work was supported by the project PIP CONICET (Proyecto de Investigación Plurianual del Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) 2010-2012 GI 11220090101059, and is part of the research plan for the doctoral thesis of Mauro Carrasco, supported by a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro F. Carrasco.

Additional information

Handling editor: Vasilis Valavanis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, M.F., Venerus, L.A., Weiler, N.E. et al. Effects of different intertidal hard substrates on the recruitment of Crassostrea gigas. Hydrobiologia 827, 263–275 (2019). https://doi.org/10.1007/s10750-018-3774-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3774-x

Keywords

Navigation