Skip to main content
Log in

Differences in heat tolerance within a Daphnia magna population: the significance of body PUFA content

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this study, we use the model organism Daphnia magna to determine variation in heat tolerance within a natural population and relate this to variation in body fatty acid content and composition. As a proxy for heat tolerance we measured time to immobilization (Timm) for 25 clonal lineages isolated from a single lake. The clonal lineages were grown on Chlamydomonas reinhardii at 15°C. Upon deposition of the first clutch, Timm and body fatty acids were determined. We report significant differences of Timm and of the content of PUFAs and of eicosapentaenoic acid (EPA) among the D. magna clonal lineages. Timm was negatively related to total PUFA-content, indicating that increased body PUFA-content may be detrimental for membrane properties at high temperatures. Juvenile somatic growth varied significantly among clonal lineages, and was not related to total body PUFA-content, hence body PUFA-content was no proxy for PUFA-limitation. No correlative evidence for an impact of body EPA-content on Timm or juvenile growth was obtained. We hypothesize that the observed intra-population variability of body PUFA-content might be related to potentially different amplitudes in diel vertical migration in response to fish. These different amplitudes would mean differences in the extent of diurnal temperature fluctuations among the clonal lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Becker, C. & M. Boersma, 2005. Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnology and Oceanography 50: 388–397.

    Article  CAS  Google Scholar 

  • Bradshaw, W. E. & C. M. Holzapfel, 2006. Climate change—Evolutionary response to rapid climate change. Science 312: 1477–1478.

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski, T. & E. von Elert, 2015. Predator evasion in zooplankton is suppressed by polyunsaturated fatty acid limitation. Oecologia 179: 687–697.

    Article  PubMed  Google Scholar 

  • Coggins, B. L., J. W. Collins, K. J. Holbrook & L. Y. Yampolsky, 2017. Antioxidant capacity, lipid peroxidation, and lipid composition changes during long-term and short-term thermal acclimation in Daphnia. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 187: 1091–1106.

    Article  CAS  PubMed  Google Scholar 

  • De Meester, L., L. J. Weider & R. Tollrian, 1995. Alternative antipredator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378: 483–485.

    Article  Google Scholar 

  • Farkas, T., 1979. Adaptation of fatty-acid compositions to temperature—study on planktonic crustaceans. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 64: 71–76.

    Article  Google Scholar 

  • Geerts, A. N., J. Vanoverbeke, B. Vanschoenwinkel, W. van Doorslaer, H. Feuchtmayr, D. Atkinson, B. Moss, T. A. Davidson, C. D. Sayer & L. de Meester, 2015. Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Climate Change 5: 665.

    Article  Google Scholar 

  • Guschina, I. A. & J. L. Harwood, 2006. Mechanisms of temperature adaptation in poikilotherms. FEBS Letters 580: 5477–5483.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, K. E., 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. Journal of Shellfish Research 9: 1–28.

    Google Scholar 

  • Hazel, J. R., 1995. Thermal adaptation in biological membranes—is homeoviscous adaptation the explanation. Annual Review of Physiology 57: 19–42.

    Article  CAS  PubMed  Google Scholar 

  • Hazel, J. R. & E. E. Williams, 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research 29: 167–227.

    Article  CAS  PubMed  Google Scholar 

  • Helmuth, B., J. G. Kingsolver & E. Carrington, 2005. Biophysics, physiologicalecology, and climate change: does mechanism matter? Annual Review of Physiology 67: 177–201.

    Article  CAS  PubMed  Google Scholar 

  • Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess & S. E. Williams, 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B-Biological Sciences 367: 1665–1679.

    Article  PubMed Central  Google Scholar 

  • Jansen, M., A. N. Geerts, A. Rago, K. I. Spanier, C. Denis, L. de Meester & L. Orsini, 2017. Thermal tolerance in the keystone species Daphnia magna-a candidate gene and an outlier analysis approach. Molecular Ecology 26: 2291–2305.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, T. N., V. Loeschcke & A. A. Hoffmann, 2007. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proceedings of the Royal Society B-Biological Sciences 274: 771–778.

    Article  Google Scholar 

  • Martin-Creuzburg, D., A. Wacker & T. Basen, 2010. Interactions between limiting nutrients: consequences for somatic and population growth of Daphnia magna. Limnology and Oceanography 55: 2597–2607.

    Article  CAS  Google Scholar 

  • Martin-Creuzburg, D., A. Wacker, C. Ziese & M. J. Kainz, 2012. Dietary lipid quality affects temperature-mediated reaction norms of a freshwater key herbivore. Oecologia 168: 901–912.

    Article  PubMed  Google Scholar 

  • Mitchell, S. E. & W. Lampert, 2000. Temperature adaptation in a geographically widespread zooplankter, Daphnia magna. Journal of Evolutionary Biology 13: 371–382.

    Article  Google Scholar 

  • Müller-Navarra, D. C., 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv für Hydrobiologie 132: 297–307.

    Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

    Article  PubMed  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Persson, J., M. T. Brett, T. Vrede & J. L. Ravet, 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116: 1152–1163.

    Article  Google Scholar 

  • Schlotz, N., J. G. Sorensen & D. Martin-Creuzburg, 2012. The potential of dietary polyunsaturated fatty acids to modulate eicosanoid synthesis and reproduction in Daphnia magna: a gene expression approach. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 162: 449–454.

    Article  CAS  Google Scholar 

  • Schlotz, N., A. Roulin, D. Ebert & D. Martin-Creuzburg, 2016. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 201: 115–123.

    Article  CAS  Google Scholar 

  • Schluter, L., K. T. Lohbeck, M. A. Gutowska, J. P. Groger, U. Riebesell & T. B. H. Reusch, 2014. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change 4: 1024–1030.

    Article  CAS  Google Scholar 

  • Schwarzenberger, A., S. D‘hondt, W. Vyverman & E. von Elert, 2013. Seasonal succession of cyanobacterial protease inhibitors and Daphnia magna genotypes in a eutrophic Swedish lake. Aquatic Sciences 75: 433–445.

    Article  CAS  Google Scholar 

  • Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. Slotsbo, Y. W. Dong, C. D. G. Harley, D. J. Marshall, B. S. Helmuth & R. B. Huey, 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters 19: 1372–1385.

    Article  PubMed  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters 106: 433–471.

    Google Scholar 

  • Sperfeld, E. & A. Wacker, 2011. Temperature- and cholesterol-induced changes in eicosapentaenoic acid limitation of Daphnia magna determined by a promising method to estimate growth saturation thresholds. Limnology and Oceanography 56: 1273–1284.

    Article  CAS  Google Scholar 

  • Sperfeld, E. & A. Wacker, 2012. Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs. Freshwater Biology 57: 497–508.

    Article  CAS  Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Taipale, S. J., M. J. Kainz & M. T. Brett, 2011. Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos 120: 1674–1682.

    Article  Google Scholar 

  • von Elert, E., 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnology and Oceanography 47: 1764–1773.

    Article  Google Scholar 

  • von Elert, E. & P. Fink, 2018. Global warming: testing for direct and indirect effects of temperature at the interface of primary producers and herbivores. Frontiers of Ecology and Evolution 6: 87.

    Article  Google Scholar 

  • von Elert, E. & F. Jüttner, 1997. Phosphorus limitation not light controls the exudation of allelopathic compounds by Trichormus doliolum. Limnology and Oceanography 42: 1796–1802.

    Article  Google Scholar 

  • von Elert, E. & P. Stampfl, 2000. Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids. Freshwater Biology 45: 189–200.

    Article  Google Scholar 

  • Wacker, A. & E. von Elert, 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82: 2507–2520.

    Article  Google Scholar 

  • Weers, P. M. M., K. Siewersen & R. D. Gulati, 1997. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet? Freshwater Biology 38: 731–738.

    Article  CAS  Google Scholar 

  • Williams, P. J., K. B. Dick & L. Y. Yampolsky, 2012. Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evolutionary Ecology 26: 591–609.

    Article  Google Scholar 

  • Windisch, H. S. & P. Fink, 2018. The molecular basis of essential fatty acid limitation in Daphnia magna: a transcriptomic approach. Molecular Ecology 27: 871–885.

    Article  CAS  PubMed  Google Scholar 

  • Yampolsky, L. Y., T. M. M. Schaer & D. Ebert, 2014. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proceedings of the Royal Society B-Biological Sciences 281: 20132744.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Science Foundation, DFG, with a Grant to EvE (EL 179/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric von Elert.

Additional information

Guest editors: Linda C. Weiss, Eric von Elert, Christian Laforsch & Max Rabus / Proceedings of the 11th International Symposium on Cladocera

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, C., Ilic, M. & von Elert, E. Differences in heat tolerance within a Daphnia magna population: the significance of body PUFA content. Hydrobiologia 846, 17–26 (2019). https://doi.org/10.1007/s10750-018-3769-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3769-7

Keywords

Navigation