Skip to main content

Advertisement

Log in

Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Environmental DNA (eDNA) studies show great promise for non-invasive surveys of aquatic organisms, but should account for imperfect detection and the influences of biotic and abiotic conditions on detection. We evaluated an eDNA protocol for Roanoke logperch (RLP) Percina rex, an endangered fish of the eastern United States occupying habitats ranging from cold, clear creeks to warm, turbid rivers. We assayed water samples from streams presumed likely to be occupied or unoccupied by RLP based on previous fish surveys. Data were analyzed using multi-scale occupancy models that estimated occurrence and detection probability at the scales of sites, replicate water filters, and replicate PCR reactions, and environmental influences on these probabilities. We detected RLP eDNA at 11 of 12 sites in occupied streams and no sites in presumed-unoccupied streams. In best-supported models, detection was positively related to an index of fish density, whereas other environmental factors had no consistent effects. This approach had a higher detection rate and lower sensitivity to sampling conditions than traditional techniques like snorkeling and electrofishing, suggesting it could provide a powerful tool for assessing the distribution of this and other rare fishes that occur across a wide range of fluvial habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amberg, J. J., S. G. McCalla, E. Monroe, R. Lance, K. Baerwaldt & M. P. Gaikowsk, 2015. Improving efficiency and reliability of environmental DNA analysis for silver carp. Journal of Great Lakes Research 41: 367–373.

    Article  CAS  Google Scholar 

  • Baldigo, B. P., L. A. Sporn, S. D. George & J. A. Ball, 2017. Efficacy of environmental DNA to detect and quantify brook trout populations in headwater streams of the Adirondack Mountains, New York. Transactions of the American Fisheries Society 146: 99–111.

    Article  CAS  Google Scholar 

  • Barnes, M. A., C. R. Turner, C. L. Jerde, M. A. Renshaw, W. L. Chadderton & D. M. Lodge, 2014. Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science and Technology 48: 1819–1827.

    Article  CAS  Google Scholar 

  • Boothroyd, M., N. E. Mandrak, M. Fox & C. C. Wilson, 2016. Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar (Lepisosteus oculatus). Aquatic Conservation 26: 1107–1119.

    Article  Google Scholar 

  • Buxton, A. S., J. J. Groombridge & R. A. Griffiths, 2018. Seasonal variation in environmental DNA detection in sediment and water samples. PLoS ONE 13: e0191737.

    Article  Google Scholar 

  • Deiner, K. & F. Altermatt, 2014. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9(2): 88786.

    Article  Google Scholar 

  • Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet & C. Miaud, 2011. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6: e23398.

    Article  CAS  Google Scholar 

  • Doi, H., R. Inui, Y. Akamatsu, K. Kanno, H. Yamanaka, T. Takahara & T. Minamoto, 2017. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology 62: 30–39.

    Article  CAS  Google Scholar 

  • Ellison, S. R., C. A. English, M. J. Burns & J. T. Keer, 2006. Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnology 6: 33–43.

    Article  Google Scholar 

  • Furlan, E. M., D. Gleeson, C. M. Hardy & R. P. Duncan, 2016. A framework for estimating the sensitivity of eDNA surveys. Molecular Ecology Resources 16: 641–654.

    Article  CAS  Google Scholar 

  • Goldberg, C. S., C. R. Turner, K. Deiner, K. E. Klymus, P. F. Thomsen, M. A. Murphy, S. F. Spear, A. McKee, S. J. Oyler-McCance, R. S. Cornman, M. B. Laramie, A. R. Mahon, R. F. Lance, D. S. Pilliod, K. M. Strickler, L. P. Waits, A. K. Fremier, T. Takahara, J. E. Herder & P. Taberlet, 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7: 1299–1307.

    Article  Google Scholar 

  • Hines, J. E., 2006. PRESENCE: Software to estimate patch occupancy and related parameters. United States Geological Survey, Patuxent Wildlife Research Center. [available on internet at http://www.mbr-pwrc.usgs.gov/software/presence.html.

  • Hunter, M. E., S. J. Oyler-McCance, R. M. Dorazio, J. A. Fike, B. J. Smith, C. T. Hunter & K. M. Hart, 2015. Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive burmese pythons. PLoS ONE 10: e0121655.

    Article  Google Scholar 

  • Jane, S. F., T. M. Wilcox, K. S. McKelvey, M. K. Young, M. K. Schwartz, W. H. Lowe, B. H. Letcher & A. R. Whiteley, 2015. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Molecular Ecology Resources 15: 216–227.

    Article  CAS  Google Scholar 

  • Janosik, A. M. & C. E. Johnston, 2015. Environmental DNA as an effective tool for detection of imperiled fishes. Environmental Biology of Fishes 98: 1889–1893.

    Article  Google Scholar 

  • Jerde, C. L., A. R. Mahon, W. L. Chadderton & D. M. Lodge, 2011. “Sight-unseen” detection of rare species using environmental DNA. Conservation Letters 4: 150–157.

    Article  Google Scholar 

  • Jerde, C. L., B. P. Olds, A. J. Shogren, E. A. Andruszkiewicz, A. R. Mahon, D. Bolster & J. L. Tank, 2016. Influence of stream bottom substrate on retention and transport of vertebrate environmental DNA. Environmental Science and Technology 50(16): 8770–8779.

    Article  CAS  Google Scholar 

  • Laramie, M. B., D. S. Pilliod & C. S. Goldberg, 2015. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation 183: 29–37.

    Article  Google Scholar 

  • MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey & J. E. Hines, 2006. Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Academic Press, Burlington.

    Google Scholar 

  • Maruyama, A., K. Nakamura, H. Yamanaka, M. Kondoh & T. Minamoto, 2014. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 10: e0118727.

    Google Scholar 

  • Matthews, W. J., 1998. Patterns in freshwater fish ecology. Chapman and Hall, New York.

    Book  Google Scholar 

  • McKee, A. M., S. F. Spear & T. W. Pierson, 2015. Special Issue Article: Environmental DNA: The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biological Conservation 183: 70–76.

    Article  Google Scholar 

  • Moyer, G. R., E. Díaz-Ferguson, J. E. Hill & C. Shea, 2014. Assessing Environmental DNA Detection in Controlled Lentic Systems. PLoS ONE 9: e103767.

    Article  Google Scholar 

  • Nevers, M. B., M. N. Byappanahalli, C. C. Morris, D. Shively, K. Przybyla-Kelly, A. M. Spoljaric & E. F. Roseman, 2018. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus). PLoS ONE 9: e0191720.

    Article  Google Scholar 

  • Nichols, J. D., L. L. Baile, N. W. Talancy, E. H. Campbell Grant, A. T. Gilbert, E. M. Annand, T. P. Husband & J. E. Hines, 2008. Multi-scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology 45: 1321–1329.

    Article  Google Scholar 

  • Pavlacky, D. C., J. A. Blakesley, G. C. White, D. J. Hanni & P. M. Lukacs, 2012. Hierarchical multi-scale occupancy estimation for monitoring wildlife populations. The Journal of Wildlife Management 76: 154–162.

    Article  Google Scholar 

  • Peterson, J. T. & C. P. Paukert, 2009. Converting nonstandard fish sampling data to standardized data. In Bonar, S. A., W. A. Hubert & D. W. Willis (eds), Standard Methods for Sampling North American Freshwater Fishes. American Fisheries Society, Bethesda: 195–215.

    Google Scholar 

  • Pfleger, M. O., S. J. Rider, C. E. Johnston & A. M. Janosik, 2016. Saving the doomed: Using eDNA to aid in detection of rare sturgeon for conservation (Acipenseridae). Global Ecology and Conservation 8: 99–107.

    Article  Google Scholar 

  • Pilliod, D. S., C. S. Goldberg, R. S. Arkle & L. P. Waits, 2013a. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences 70: 1123–1130.

    Article  CAS  Google Scholar 

  • Pilliod, D. S., C. S. Goldberg, R. S. Arkle & L. P. Waits, 2013b. Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources 14: 109–116.

    Article  Google Scholar 

  • Pont, D., M. Rocle, A. Valentini, R. Civade, P. Jean, A. Maire, N. Roset, M. Schabuss, H. Zornig & T. Dejean, 2018. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports 8: 10361.

    Article  Google Scholar 

  • Rabeni, C. F., J. Lyons, N. Mercado-Silva & J. T. Peterson, 2009. Warmwater fish in wadeable streams. In Bonar, S. A., W. A. Hubert & D. W. Willis (eds), Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda: 43–58.

    Google Scholar 

  • Renshaw, M. A., B. P. Olds, C. L. Jerde, M. M. McVeigh & D. M. Lodge, 2015. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction. Molecular Ecology Resources 15: 168–176.

    Article  CAS  Google Scholar 

  • Roberts, J. H., 2012. Assessment of the distribution and abundance of Roanoke logperch (Percina rex) in the Dan River basin of Virginia. Final Report to Virginia Department of Game and Inland Fisheries, Richmond.

    Google Scholar 

  • Roberts, J. H., P. L. Angermeier & E. M. Hallerman, 2013. Distance, dams, and drift: what structures populations of an endangered, benthic stream fish? Freshwater Biology 58: 2050–2064.

    Article  Google Scholar 

  • Robson, H. L. A., T. H. Noble, R. J. Saunders, S. K. A. Robson, D. W. Burrows & D. R. Jerry, 2016. Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Molecular Ecology Resources 16(4): 922–932.

    Article  CAS  Google Scholar 

  • Rosenberger, A. E., 2007. An update to the Roanoke logperch recovery plan. Final Report to the U.S. Fish and Wildlife Service, Gloucester, Virginia.

    Google Scholar 

  • Schmelzle, M. C. & A. P. Kinziger, 2016. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species. Molecular Ecology Resources 16: 895–908.

    Article  CAS  Google Scholar 

  • Schmidt, B. R., M. Kéry, S. Ursenbacher, O. J. Hyman, J. P. Collins & N. Yoccoz, 2013. Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods in Ecology & Evolution 4: 646–653.

    Article  Google Scholar 

  • Schrader, C., A. Schielke, L. Ellerbroek & R. Johne, 2012. PCR inhibitors—occurrence, properties and removal. Journal of Applied Microbiology 113: 1014–1026.

    Article  CAS  Google Scholar 

  • Schultz, M. T. & R. F. Lance, 2015. Modeling the sensitivity of field surveys for detection of environmental DNA (eDNA). PLoS ONE 10(10): e0141503.

    Article  Google Scholar 

  • Shogren, A. J., J. L. Tank, E. Andruszkiewicz, B. Olds, A. R. Mahon, C. L. Jerde & D. Bolster, 2017. Controls on eDNA movement in streams: transport, retention, and resuspension. Scientific Reports 7: 5065.

    Article  Google Scholar 

  • Stoeckle, B. C., S. Beggel, A. F. Cerwenka, E. Motivans, R. Kuehn, J. Geist & H. Doi, 2017. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PLOS ONE 12(12): e0189119.

    Article  Google Scholar 

  • Strickler, K. M., A. K. Fremier & C. S. Goldberg, 2015. Special Issue Article: Environmental DNA: Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183: 85–92.

    Article  Google Scholar 

  • Takahara, T., T. Minamoto, H. Yamanaka, H. Doi & Z. Kawabata, 2012. Estimation of fish biomass using environmental DNA. PLoS ONE 7: e35868.

    Article  CAS  Google Scholar 

  • Takahara, T., T. Minamoto & H. Doi, 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8: e56584.

    Article  CAS  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  Google Scholar 

  • Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.

    Article  Google Scholar 

  • Thomsen, P. F., J. O. S. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando & E. Willerslev, 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565–2573.

    Article  CAS  Google Scholar 

  • Tillotson, M. D., R. P. Kelly, J. J. Duda, M. Hoy, J. Kralj & T. P. Quinn, 2018. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biological Conservation 220: 1–11.

    Article  Google Scholar 

  • Turner, C. R., D. J. Miller, K. J. Coyne & J. Corush, 2014a. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.). PloS ONE 9: e114329.

    Article  Google Scholar 

  • Turner, C. R., K. L. Uy & R. C. Everhart, 2015. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation 183: 93–102.

    Article  Google Scholar 

  • Turner, C. R., M. A. Barnes, C. C. Y. Xu, S. E. Jones, C. L. Jerde & D. M. Lodge, 2014b. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution 5: 676–684.

    Article  Google Scholar 

  • Wang, Y., 2004. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Research 32(3): 1197–1207.

    Article  CAS  Google Scholar 

  • Wilcox, T. M., K. S. McKelvey, M. K. Young, S. F. Jane, W. H. Lowe, A. R. Whiteley & M. K. Schwartz, 2013. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS ONE 8: e59520.

    Article  CAS  Google Scholar 

  • Wilcox, T. M., K. S. McKelvey, M. K. Young, W. H. Lowe, M. K. Schwartz, 2015. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis). Conservation Genetics Resources 7(3): 639–641.

    Article  Google Scholar 

  • Wilcox, T. M., K. S. McKelvey, M. K. Young, A. J. Sepulveda, B. B. Shepard, S. F. Jane, A. R. Whiteley, W. H. Lowe & M. K. Schwartz, 2016. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Ecological Applications 194: 209–216.

    Google Scholar 

  • Williams, K. E., K. P. Huyvaert & A. J. Piaggio, 2017. Clearing muddied waters: Capture of environmental DNA from turbid waters. PLoS ONE 12: e0179282.

    Article  Google Scholar 

  • Willoughby, J. R., B. K. Wijayawardena, M. Sundaram, R. K. Swihart & J. A. DeWoody, 2016. The importance of including imperfect detection models in eDNA experimental design. Molecular Ecology Resources 16: 837–844.

    Article  CAS  Google Scholar 

  • Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen & T. L. Madden, 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Virginia Department of Game and Inland Fisheries (Fund #2014-14502). We thank M. Pinder for his assistance in bringing it to fruition. M. Moore, G. Moyer, T. Darden, M. Walker, and C. Cutler kindly helped us troubleshoot technical issues. J. Eschenroeder and B. Blood assisted with the creation of figures. This study was funded by the Virginia Department of Game and Inland Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Roberts.

Additional information

Handling editor: Eric Larson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strickland, G.J., Roberts, J.H. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats. Hydrobiologia 826, 129–144 (2019). https://doi.org/10.1007/s10750-018-3723-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3723-8

Keywords

Navigation