Skip to main content
Log in

Distinct responses of Copepoda and Cladocera diversity to climatic, environmental, and geographic filters in the La Plata River basin

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The distribution of freshwater cladocerans and copepods and the drivers of beta diversity along La Plata basin were studied. We propose that local environmental conditions, dispersal limitation, and climate affect cladocerans and copepods differently owing to their variances in terms of life strategies. We calculated beta diversity using four dissimilarity metrics, and also the relative importance of spatial, environmental, and climatic variables by partitioning variance and forward selection procedure coupled with a partial redundancy analysis. Beta diversity patterns were characterized by a high turnover in the subbasins and a small contribution of nestedness. Forward selection evidenced the influence of total nitrogen and total suspended matter for both copepods and cladocerans, suggesting a strong role of eutrophication in controlling their turnover, but spatial distance, precipitation, and mean temperature of winter were related only to copepods. The last one suggests a likely role of geographic isolation driving speciation and endemism in Copepoda and reinforces the strong effect of climatic variation resulting in the high endemism patterns one finds in the Neotropical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, J. S. & R. E. Reis, 2011. Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, CA.

    Book  Google Scholar 

  • Allen, M. R., 2007. Measuring and modeling dispersal of adult zooplakton. Oecologia 153: 135–143.

    Article  Google Scholar 

  • Anderson, M. J., 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223–1232.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecology Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Boxshall, G. A. & D. Defaye, 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195–207.

    Article  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the Natural Academy of Sciences of USA 104: 17430–17434.

    Article  CAS  Google Scholar 

  • Chase, J. M. & J. A. Myers, 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society 366: 2351–2363.

    Article  Google Scholar 

  • Chesson, P. & N. Huntly, 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. American Naturalist 150: 519–553.

    Article  CAS  Google Scholar 

  • Cole, G. A., 1979. Textbook of limnology, 2nd ed. The C.V. Mosby Company, Saint Louis.

    Google Scholar 

  • Cottenie, K., N. Nuytten, E. Michels & L. De Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350.

    Article  Google Scholar 

  • Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84(4): 991–1000.

    Article  Google Scholar 

  • Debastiani-Júnior, J. R. & M. G. Nogueira, 2015. How water level management affects cladoceran assemblages in lakes lateral to a reservoir. Marine and Freshwater Research. https://doi.org/10.1071/MF14281.

    Article  Google Scholar 

  • Debastiani-Júnior, J. R., L. M. A. Elmoor-Loureiro & M. G. Nogueira, 2015. High taxonomic resolution as a determinant on finding new species and new records in the Río de La Plata basin: a case on Chydoridae (Crustacea: Branchiopoda: Cladocera). Nauplius 23(1): 21–30.

    Article  Google Scholar 

  • Dodson, S. I., R. A. Lillie & S. Will-Wolf, 2005. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecology Applied 15: 1191–1198.

    Article  Google Scholar 

  • Dray, S., 2013. SpacemakeR: Spatial modelling. R package version 0.0-5/r113. http://R-Forge.R-project.org/projects/sedar.

  • Eitam, A., L. Blaunstein, K. Van Damme, H. J. Dumont & K. Martens, 2004. Crustacean species richness in temporary pools: relationships with habitat traits. Hydrobiologia 525: 125–130.

    Article  Google Scholar 

  • Ferdous, Z. & A. K. M. Muktadir, 2009. Potentiality of zooplankton as bioindicator. American Journal of Applied Science 6: 1815–1819.

    Article  Google Scholar 

  • Forró, L., N. M. Korovchinsky, A. A. Kotov & A. Petrusek, 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595: 177–184.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clyno & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwaters. 2nd ed. Blackwell, Oxford.

    Google Scholar 

  • Henriques-Silva, R., Z. Lindo & P. R. Peres-Neto, 2013. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94: 627–639.

    Article  Google Scholar 

  • Henriques-Silva, R., B. Pinel-Alloul & P. R. Peres-Neto, 2016. Climate, history and life-history strategies interact in explaining differential macroecological patterns in freshwater zooplankton. Global Ecology and Biogeography 25: 1454–1465.

    Article  Google Scholar 

  • Hobæk, A., M. Manca & T. Andersen, 2002. Factors influencing species richness in lacustrine zooplankton. Acta Oecologica 23: 155–163.

    Article  Google Scholar 

  • Kindt, R. & R. Coe, 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. http://www.worldagroforestry.org/output/tree-diversity-analysis.

  • Lande, R., 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5–13.

    Article  Google Scholar 

  • Landeiro, V. L., L. M. Bini, R. R. C. Costa, E. Franklin, A. Nogueira, J. L. P. Souza, J. Moraes & W. E. Magnusson, 2012. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators 23: 366–373.

    Article  Google Scholar 

  • Legendre, P., 2008. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology 1(1): 3–8.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, New York.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & M. de Cáceres, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16: 951–963.

    Article  Google Scholar 

  • Legendre, P., D. Borcard & P. R. Peres-Neto, 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75: 435–450.

    Article  Google Scholar 

  • Legendre, P., J. Oksanen & C. J. F. Ter Braak, 2011. Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution 2: 269–277.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase & M. E. Hoopes, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Leibold, M. A., E. P. Economo & P. Peres-Neto, 2010. Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecology Letters 13: 1290–1299.

    Article  Google Scholar 

  • Leprieur, F., P. A. Tedesco, B. Hugueny, O. Beauchard, H. H. Dürr, S. Brosse & T. Oberdorff, 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14(4): 325–334.

    Article  Google Scholar 

  • Marckereth, F. I. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, London.

    Google Scholar 

  • Marrone, F., G. Alfonso, L. Naselli-Flores & F. Stoch, 2017. Diversity patterns and biogeography of Diaptomidae (Copepoda, Calanoida) in the Western Palearctic. Hydrobiologia 800: 45–60.

    Article  CAS  Google Scholar 

  • Matsumura-Tundisi, T. & J. G. Tundisi, 2003. Calanoida (Copepoda) species composition changes in the reservoirs of São Paulo State (Brazil in the last twenty years). Hydrobiologia 504: 215–222.

    Article  Google Scholar 

  • Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, et al., 2001. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.

    Article  Google Scholar 

  • Nogueira, M. G., P. C. Reis-Oliveira & Y. T. Britto, 2008. Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 27(1): 151–170.

    Google Scholar 

  • Oksanen, J., 2018. Multivariate analysis of ecological communities in R: vegan tutorial. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 26 June 2018.

  • Panarelli, E. A., S. M. C. Casanova & R. Henry, 2008. The role of resting eggs in the recovery of zooplankton community in a marginal lake of the Paranapanema River (São Paulo, Brazil), after a long drought period. Acta Limnologica Brasiliensia 20: 73–88.

    Google Scholar 

  • Perbiche-Neves, G. & M. G. Nogueira, 2013. Reservoir design and operation: effects on aquatic biota – a case study of planktonic copepods. Hydrobiologia 707: 187–198.

    Article  CAS  Google Scholar 

  • Perbiche-Neves, G., D. Previattelli, M. Pie, A. Duran, E. Suárez-Morales, G. A. Boxshall, M. G. Nogueira & C. E. F. Rocha, 2014. Historical biogeography of the neotropical Diaptomidae (Crustacea: Copepoda). Frontiers in Zoology 11: 36.

    Article  Google Scholar 

  • Perbiche-Neves, G., G. A. Boxshall, D. Previattelli, D. A. O. Naliato, M. Pie, C. E. F. Rocha & M. G. Nogueira, 2015. Regulation of the abundance and turnover of copepod species by temperature, turbidity and habitat type in a large river basin. Austral Ecology 40(6): 718–725.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  Google Scholar 

  • Pinel-Alloul, B., A. André, P. Legendre, J. A. Cardille, K. Patalas & A. Salki, 2013. Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Global Ecology and Biogeography 22: 784–795.

    Article  Google Scholar 

  • Portinho, J. L., G. Perbiche-Neves & M. G. Nogueira, 2016. Zooplankton community and tributary effects in free-flowing section downstream a large tropical reservoir. International Review of Hydrobiology 100: 1–9.

    Google Scholar 

  • R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Simões, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758: 3–17.

    Article  Google Scholar 

  • Siqueira, T., C. G. L. T. Lacerda & V. S. Saito, 2015. How does landscape modification induce biological homogenization in tropical stream metacommunities? Biotropica 47(4): 509–516.

    Article  Google Scholar 

  • Stegen, J. C., X. Lin, J. K. Fredrickson, X. Chen, D. W. Kennedy, C. J. Murray, M. L. Rockhold & A. Konopka, 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal 7(11): 2069–2079.

    Article  Google Scholar 

  • Stoks, R., A. N. Geerts & L. De Meester, 2014. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evolutionary Applications 7(1): 42–55.

    Article  Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1960. A manual of sea water analysis. Bulletin of Fisheries Research Board of Canada 125: 1–185.

    Google Scholar 

  • Suárez-Morales, E., 2003. Historical biogeography and distribution of the freshwater calanoid copepods (Crustacea: Copepoda) of the Yucatan Peninsula, Mexico. Journal of Biogeography 30: 1851–1859.

    Article  Google Scholar 

  • Suárez-Morales, E., J. W. Reid & M. Elías-Gutiérrez, 2005. Diversity and distributional patterns of neotropical freshwater copepods (Calanoida: Diaptomidae). International Review of Hydrobiology 90(1): 71–83.

    Article  Google Scholar 

  • Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. Proceedings of the Conference of Primary Productivity Measurements in Marine and Freshwater. USAEE: 142–146.

  • Thornton, K. W., 1990. Sedimentary processes. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 43–70.

    Google Scholar 

  • Vadadi-Fulop, C., C. Sipkay, G. Meszaros & L. Hufnagel, 2012. Climate change and freshwater zooplankton: what does it boil down to? Aquatic Ecology 46(4): 501–519.

    Article  Google Scholar 

  • Vanschoenwinkel, B., J. Mergeay, T. Pinceel, A. Waterkeyn, H. Vandewaerde, M. Seaman & L. Brendonck, 2011. Long distance dispersal of zooplankton endemic to isolated mountaintops – an example of an ecological process operating on an evolutionary time scale. PLoS One 6: 1–10.

    Article  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. Quaternary Revision Biology 85: 183–206.

    Article  Google Scholar 

  • Viana, D. S., J. Figuerola, K. Schwenk, M. Manca, A. Hobæk, M. Mjelde, C. D. Preston, R. J. Gornall, J. M. Croft, et al., 2015. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39: 281–288.

    Article  Google Scholar 

  • Von Ruckert, G. & A. Giani, 2008. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research 30(10): 1157–1168.

    Article  Google Scholar 

  • Wallace, G. T., T. L. Kim & C. J. Neufeld, 2014. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod. Conservation Physiology 2: 1.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers 11: 105–119.

    Article  Google Scholar 

  • Whittaker, R. H., 1967. Gradient analysis of vegetation. Biological Reviews 42: 207–264.

    Article  CAS  Google Scholar 

  • Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. Lévesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35(7): 359–369.

    Article  CAS  Google Scholar 

  • Xiong, W., J. Li, Y. Chen, B. Shan, W. Wang & A. Zhan, 2016. Determinants of community structure of zooplankton in heavily polluted river ecosystems. Scientific Reports 6: 22043.

    Article  CAS  Google Scholar 

  • Zhao, K., K. Song, Q. Wang, L. Da & Q. Wang, 2017. Metacommunity structure of zooplankton in river networks: roles of environmental and spatial factors. Ecological Indicators 73(2017): 96–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the FAPESP for financial support (process numbers 2008/02015-7 and 2011/18358-3 for GPN; 2011/23444-6 for JRDJ; 2009/06149-0 for DAON; and 2009/00014-6 for MGN); J.L. Portinho and S. Casanova for help in fieldwork; and the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilmar Perbiche-Neves.

Additional information

Handling editor: Karl E. Havens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perbiche-Neves, G., Saito, V.S., Simões, N.R. et al. Distinct responses of Copepoda and Cladocera diversity to climatic, environmental, and geographic filters in the La Plata River basin. Hydrobiologia 826, 113–127 (2019). https://doi.org/10.1007/s10750-018-3722-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3722-9

Keywords

Navigation