Skip to main content

Advertisement

Log in

Both lake regime and fish introduction shape autotrophic planktonic communities of lakes from the Patagonian Plateau (Argentina)

  • PHYTOPLANKTON & BIOTIC INTERACTIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 05 December 2018

This article has been updated

Abstract

Strobel Plateau hosts more than 1,500 shallow lakes displaying different water regimes, which constitute the habitat for many species. Although the region is naturally fishless, many of the lakes were stocked with trout, bearing uncertainty about the possible effects on the ecosystem. The main objective of this study was to analyze the characteristics of planktonic autotrophic communities of lakes differing in regime (phytoplankton turbid, clear vegetated, and clear unvegetated) and presence/absence of fish. During late spring and summer, 14 water bodies were sampled in 2011 and 2013 considering different regimes and presence/absence of fish. Besides limnological variables, the autotrophic communities, from pico to microplankton, were also analyzed. Differences in physical and chemical characteristics observed among the lakes corresponded to their current regime and the presence/absence of trouts. Autotrophic picoplankton and phytoplankton > 20 µm abundances differed among lake types being highest in fish-stocked lakes. Although the three type of lakes presented phycoerythrin-rich picocyanobacteria and picoeukaryotes, only fish-stocked lakes hosted phycocyanin-rich picocyanobacteria. Moreover, fish-stocked lakes were dominated by cyanobacteria, while chlorophytes abounded in fishless systems. Evidences that lake regime and fish occurrence influence planktonic autotrophic communities of Strobel plateau is here provided, highlighting the intra- and interannual dynamism of the aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 December 2018

    Due to an unfortunate turn of events, the first- and surnames of all authors were transposed in the original publication. The original article has been corrected and the proper representation of the authors’ names and their affiliation is also listed here.

References

  • Abell, J. M., D. Özkundakci, D. P. Hamilton & J. R. Jones, 2012. Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study. Fundamental and Applied Limnology 181: 1–14.

    Article  CAS  Google Scholar 

  • Anderson, T. W., M. A. Tiffany & S. H. Hurlbert, 2007. Stratification, sulfide, worms, and decline of the Eared Grebe (Podiceps nigricollis) at the Salton Sea, California. Lake and Reservoir Management 23(5): 500–517.

    Article  Google Scholar 

  • Bartozek, E. C. R., N. C. Bueno, A. Feiden & L. C. Rodrigues, 2016. Response of phytoplankton to an experimental fish culture in net cages in a subtropical reservoir. Brazilian Journal of Biology 76(4): 824–833.

    Article  CAS  Google Scholar 

  • Blanco, S., 2001. Estudio Experimental sobre la Influencia de los Nutrientes en la Ecología Trófica de los Peces de una Laguna Somera. M Sc Thesis, Universidad de León.

  • Blanco, S., M. Fernández-Aláez & E. Bécares, 2008. Efficiency of top-down control depends on nutrient concentration in a Mediterranean shallow lake: a mesocosm study. Marine and Freshwater Research 59: 922–930.

    Article  CAS  Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & F. Johansson, 1993. Long-term patterns of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Article  Google Scholar 

  • Borics, G., B. Tóthmérész, B. A. Lukács & G. Várbíró, 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262.

    Article  Google Scholar 

  • Brinson, M. M. & A. I. Malvárez, 2002. Temperate freshwater wetlands: types, status and threats. Wetlands 29(2): 115–133.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgsdon, 1985. Cascading trophic interaction and lake ecosystem productivity. BioScience 35: 635–639.

    Article  Google Scholar 

  • Carmichael, W. W. & R. H. Li, 2006. Cyanobacteria toxins in the Salton Sea. Saline Systems 2: 5.

    Article  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  Google Scholar 

  • Díaz, M., F. Pedrozo & N. Baccala, 2000. Summer classification of southern hemisphere temperate lakes (Patagonia, Argentina). Lakes and Reservoirs: Research and Management 5: 213–229.

    Article  Google Scholar 

  • Duarte, C. M. & L. Kalff, 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnology and Oceanography 31(5): 1072–1080.

    Article  Google Scholar 

  • Duggan, I. C., S. A. Wood & D. W. West, 2015. Brown trout (Salmo trutta) removal by rotenone alters zooplankton and phytoplankton community composition in a shallow mesotrophic reservoir. N Z J Marine and Freshwater Research 49: 356–365.

    Article  CAS  Google Scholar 

  • Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42(3): 537–543.

    Article  Google Scholar 

  • Feldmann, T. & P. Nõges, 2007. Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. Aquatic Botany 87: 15–21.

    Article  Google Scholar 

  • Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28.

    Article  Google Scholar 

  • Imberti S., 2005. Meseta Lago Strobel. In Áreas importantes para la conservación de las aves en Argentina. Sitios prioritarios para la conservación de la biodiversidad. Di Giacomo A. S. (ed.). Aves Argentinas/Asociación Ornitológica del Plata: Buenos Aires: 415–416.

  • Izaguirre, I. & J. F. Saad, 2014. Phytoplankton from natural water bodies of the Patagonian Plateau. Advances in Limnology 65: 309–319.

    Article  Google Scholar 

  • Izaguirre, I., P. del Giorgio, I. O’Farrell & G. Tell, 1990. Clasificación de 20 cuerpos de agua andinopatogónicos (Argentina) en base a la estructura del fitoplancton estival. Cryptogamie Algologie 11: 31–46.

    Google Scholar 

  • Izaguirre, I., F. Unrein, B. Modenutti & L. Allende, 2014. Photosynthetic picoplankton in Argentina lakes. Advances in Limnology 65: 343–357.

    Article  Google Scholar 

  • Izaguirre, I., J. Lancelotti, J. F. Saad, S. Porcel, I. O’Farrell, M. C. Marinone, I. Roesler & M. C. Dieguez, 2018. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Global Ecology and Conservation 14: e00391.

    Article  Google Scholar 

  • Janssen, A. B. G., S. Teurlincx, S. An, J. H. Janse, H. W. Paerl & W. M. Mooij, 2014. Alternative stable states in large shallow lakes? Journal of Great Lakes Research 40: 813–826.

    Article  CAS  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge: 509.

    Book  Google Scholar 

  • Lancelotti, J. L., 2009. Caracterización limnológica de lagunas de la Provincia de Santa Cruz y efectos de la introducción de trucha arco iris: (Oncorhynchus mykiss) sobre las comunidades receptoras. Ph. D. Thesis, Universidad del Comahue: 122.

  • Lancelotti, J. L., L. M. Pozzi, P. M. Yorio, M. C. Diéguez & M. A. Pascual, 2009. Fishless shallow lakes of Southern Patagonia as habitat for waterbirds at the onset of trout aquaculture. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 497–505.

    Article  Google Scholar 

  • Lancelotti, J. L., M. A. Pascual & A. Gagliardini, 2010a. A dynamic perspective of shallow lakes of arid Patagonia as habitat for waterbirds. In Meyer, P. L. (ed.), Ponds: Formation Characteristics and Uses. Nova Science Publishers Inc, New York: 187.

    Google Scholar 

  • Lancelotti, J. L., L. M. Pozzi, P. M. Yorio, M. C. Diéguez & M. A. Pascual, 2010b. Precautionary rules for exotic trout aqua-culture in fishless shallow lakes of Patagonia: minimizing impacts on the threatened Hooded Grebe (Podiceps gallardoi). Aquatic Conservation: Marine and Freshwater Ecosystems 20: 1–8.

    Article  Google Scholar 

  • Lancelotti, J. L., L. M. B. Bandieri & M. A. Pascual, 2015. Diet of the exotic Rainbow Trout in the critical habitat of the threatened Hooded Grebe. Knowledge and Management of Aquatic Ecosystems 416: 1–11.

    Google Scholar 

  • Lancelotti, J., M. C. Marinone & I. Roesler, 2017. Rainbow trout effects on zooplankton in the reproductive area of the critically endangered hooded grebe. Aquatic conservation 27: 128–136.

    Article  Google Scholar 

  • Liu, H., H. Jing, T. H. Wong & B. Chen, 2014. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environmental Microbiology Reports 6: 90–99.

    Article  Google Scholar 

  • Marker, A. F. H., A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie Beihefte. Ergebnisse der Limnologie. 14: 91–106.

    CAS  Google Scholar 

  • Medina-Sánchez, J. M., M. Villar-argaiz & P. Carrillo, 2004. Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnology and Oceanography 49(5): 1722–1733.

    Article  Google Scholar 

  • Mormul, R. P., S. Thomaz, A. A. Agostinho, C. C. Bonecker & N. Mazzeo, 2012. Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater biology 57: 1592–1602.

    Article  Google Scholar 

  • Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14: 483–488.

    Article  CAS  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1): 1–19.

    Article  Google Scholar 

  • Panza, J. L. & M. R. Franchi, 2002. Magmatismo Basáltico Cenozoico Extrandino. In Haller, M. J. (ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV congreso Geológico Argentino, El Calafate: 201–236.

    Google Scholar 

  • Pereyra, F. X., L. Fauqué & E. F. González Díaz, 2002. Geomorfología. In Haller, M. J. (ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino, El Calafate: 325–352.

    Google Scholar 

  • Perotti, M. G., M. C. Diéguez & F. G. Jara, 2005. Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Revista Chilena de Historia Natural 78: 179–200.

    Article  Google Scholar 

  • Queimaliños, C. & M. Diaz, 2014. Phytoplankton of Andean Patagonian lakes. Advances in Limnology 65: 235–256.

    Article  Google Scholar 

  • Reissig, M., C. Trochine, C. Queimaliños, E. Balseiro & B. Modenutti, 2006. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation 132: 437–447.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417–428.

    Article  Google Scholar 

  • Romo, S., M. R. Miracle, M. J. Villena, J. Rueda, F. Cerriol & E. Vicente, 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology 49(12): 1593–1607.

    Article  CAS  Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. LeRoy Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774.

    Article  CAS  Google Scholar 

  • Schallenberg, M. & B. Sorrell, 2009. Regime shifts between clear and turbid water in New Zealand lakes: environmental correlates and implications for management and restoration. N Z J Marine and Freshwater Research 43(3): 701–712.

    Article  Google Scholar 

  • Schaus, M. H., M. J. Vanni & T. E. Wissing, 2002. Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Transactions of the American Fisheries Society 131(1): 40–54.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. Van Nes, M. Rietkerk & G. Sugihara, 2009. Early-warning signals for critical transitions. Nature 461(7260): 53–59.

    Article  CAS  Google Scholar 

  • Schiaffino, M. R., J. M. Gasol, I. Izaguirre & F. Unrein, 2013. Picoplankton abundance and cytometric group diversity along a trophic and latitudinal lake gradient. Aquatic Microbial Ecology 68: 231–250.

    Article  Google Scholar 

  • Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Cauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.

    Article  CAS  Google Scholar 

  • Stomp, M., J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp & L. J. Stal, 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecology Letters 10: 290–298.

    Article  Google Scholar 

  • Suikkanen, S., S. Pulina, J. Engström-Öst, M. Lehtiniemi, S. Lehtinen & A. Brutemark, 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8: e66475.

    Article  CAS  Google Scholar 

  • The IUCN Red List of Threatened Species. (n.d.). Podiceps gallardoi. BirdLife International. 2016. Podiceps gallardoi. The IUCN Red List of Threatened Species 2016: e.T22696628A93574702. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22696628A93574702.en. Downloaded on 27 February 2018.

  • Thomasson, K., 1959. Nahuel Huapi. Plankton of some lakes in an argentine National Park, with notes on terrestrial vegetation. Acta Phytogeografica Suecica 42: 1–83.

    Google Scholar 

  • Thomasson, K., 1963. Araucanian Lakes. Plankton studies in North Patagonia, with notes on terrestrial vegetation. Acta Pytogeografica Suecica 47: 1–39.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton- methodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9: 1–38.

    Google Scholar 

  • Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 167–180.

    Google Scholar 

  • Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. Organization for Economic Co-Operation and Development (OECD), Paris.

    Google Scholar 

Download references

Acknowledgements

We thank Lic. Cristina Marinone, Dr. Ignacio Roesler, and Dr. Rodrigo Sinistro for their collaboration during the field campaigns. Also special thanks to the people of “Estancia Laguna Verde” for the lodging and collaboration on the logistics during the campaigns. This investigation was supported by a grant of the Argentinean Fund for Technical and Scientific Investigation (FONCYT, PICT 0794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Francisco Saad.

Additional information

The original version of this article was revised: the first- and surnames of all authors were transposed.

Guest editors: Hugo Sarmento, Irina Izaguirre, Vanessa Becker & Vera L. M. Huszar / Phytoplankton and its Biotic Interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, J.F., Porcel, S., Lancelotti, J. et al. Both lake regime and fish introduction shape autotrophic planktonic communities of lakes from the Patagonian Plateau (Argentina). Hydrobiologia 831, 133–145 (2019). https://doi.org/10.1007/s10750-018-3660-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3660-6

Keywords

Navigation