Skip to main content

Advertisement

Log in

Strategies for lead distribution in organs of Phragmites australis (Cav.) Trin. ex Steud. (Common reed) subjected to Pb pollution in flood and drought environments

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Heavy metal allocation in clonal organs, stems, leaves, and roots has not been systematically studied for rhizomatous perennial plants. Here, pot experiments have been designed to investigate lead (Pb) distribution in different organs of Phragmites australis (Cav.) Trin. ex Steud. Common reed subjected to 0–4500 mg Pb kg−1 under both flood and drought conditions. In either water treatment, Pb concentrations in offspring shoots were lower than in parent shoots; however, the opposite response was observed for biomass allocation for which parent shoots protected offspring shoots. Lower allocation of Pb to leaves rather than stems in offspring shoots could be a protective strategy of leaves under flood conditions. Lower Pb allocation to rhizomes is better for rhizome growth. This further provides energy for the growth of buds and offspring shoots, because the rhizome biomass and the number of buds and offspring shoots were not significantly inhibited by Pb levels of ≤ 3000 mg kg−1 in the flooded environment. These Pb allocation strategies could enhance the resistance capacity of reeds to Pb contamination by stabilizing population propagation and productivity, especially at Pb levels of ≤ 3000 mg kg−1 under flood conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, A. & H. Tajmir-Riahi, 1993. Interaction of toxic metal ions Cd2+, Hg2+, and Pb2+ with light-harvesting proteins of chloroplast thylakoid membranes. An ftir spectroscopic study. Journal of Inorganic Biochemistry 50(4): 235–243.

    Article  CAS  Google Scholar 

  • Asch, F., M. Dingkuhn, A. Sow & A. Audebert, 2005. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Research 93(2–3): 223–236.

    Article  Google Scholar 

  • Bankó, L., M. Ördög & L. Erdei, 2002. The role of rhizome system in the distribution of cadmium load among ramets of Phragmites australis. Acta Biologica Szegediensis 46(3–4): 81–82.

    Google Scholar 

  • Benson, E. J. & D. C. Hartnett, 2006. The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie. Plant Ecology 187(2): 163–178.

    Article  Google Scholar 

  • Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis (Common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety 74(4): 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno, G. & R. Lo Giudice, 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (Common reed) and their potential use as contamination indicators. Ecological Indicator 10(3): 639–645.

    Article  CAS  Google Scholar 

  • Bragato, C., H. Brix & M. Malagoli, 2006. Accumulation of nutrients and heavy metals in Phragmites australis (cav.) trin. Ex steudel and Bolboschoenus maritimus (L.) palla in a constructed wetland of the venice lagoon watershed. Environmental Pollution 144(3): 967–975.

    Article  PubMed  CAS  Google Scholar 

  • de Silva, N. D. G., E. Cholewa & P. Ryser, 2012. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in Red maple (Acer rubrum L.). Journal of Experimental Botany 63(16): 5957–5966.

    Article  PubMed  CAS  Google Scholar 

  • Du Laing, G., G. Van Ryckegem, F. M. G. Tack & M. G. Verloo, 2006. Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere 63(11): 1815–1823.

    Article  PubMed  CAS  Google Scholar 

  • Dunbabin, J. S. & K. H. Bowmer, 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment 111(2): 151–168.

    Article  CAS  Google Scholar 

  • Ensley, B. D., 2000. Rationale use for phytoremediation. In Raskin, I. & B. D. Ensley (eds), Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New York: 3–11.

    Google Scholar 

  • Fernandes, P. M., J. A. Vega, E. Jiménez & E. Rigolot, 2008. Fire resistance of European pines. Forest Ecology and Management 256: 246–255.

    Article  Google Scholar 

  • Fürtig, K., D. Pavelic, C. Brunold & R. Brändle, 1999. Copper-and iron-induced injuries in roots and rhizomes of reed (Phragmites australis). Limnologica—Ecology Manage Inland Waters 29(1): 60–63.

    Article  Google Scholar 

  • Ghosh, M. & S. A. Singh, 2005. Review on phytoremediation of heavy metals and utilization of it’s by products. Asian Jounal on Energy and Environment 6(4): 214–231.

    Google Scholar 

  • Godzik, B., 1993. Heavy metals content in plants from zinc dumps and reference areas. Polish Botanical Studies 5: 113–132.

    Google Scholar 

  • Guo, H. Y., J. G. Zhu, H. Zhou, Y. Y. Sun, Y. Yin, D. P. Pei, R. Ji, J. C. Wu & X. R. Wang, 2011. Elevated CO2 levels affects the concentrations of cooper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environmental Science and Technology 45(16): 6997–7003.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J. L., 1977. Population Biology of Plants. Academic Press, London: 892.

    Google Scholar 

  • Hartnett, D. C., M. P. Setshogo & H. J. Dalgleish, 2006. Bud banks of perennial savanna grasses in Botswana. African Journal of Ecology 44: 256–263.

    Article  Google Scholar 

  • Henry, C. P. & C. Amoros, 1996. Are the banks a source of recolonization after disturbance: an experiment on aquatic vegetation in a former channel of the rhône river. Hydrobiologia 330(2): 151–162.

    Article  Google Scholar 

  • Hu, R., K. Sun, X. Su, Y. X. Pan, Y. F. Zhang & X. P. Wang, 2012. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerine bunge and Chenopodium album (L.). Journal of Hazardous Materials 205–206: 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Islam, E., D. Liu, T. Q. Li, X. E. Yang, X. F. Jin, Q. Mahmood, S. K. Tian & J. Y. Li, 2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials 154(1–3): 914–926.

    Article  PubMed  CAS  Google Scholar 

  • Judith, S. W., G. Terry & W. Peddrick, 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environmental Pollution 131(3): 409–415.

    Article  CAS  Google Scholar 

  • Keller, B. E., K. Lajtha & S. Cristofor, 1998. Trace metal concentrations in the sediments and plants of the Danube Delta, Romania. Wetlands 18(1): 42–50.

    Article  Google Scholar 

  • Klimešová, J. & L. Klimeš, 2008. Clonal growth diversity and bud banks of plants in the czech flora: an evaluation using the clo-pla3 database. Preslia 80(3): 255–275.

    Google Scholar 

  • Klimov, S., 1985. Interaction of stress factors: increase of drought effect by the presence of Al3+ in the medium. Fiziologi Rasteni 32: 532–538.

    CAS  Google Scholar 

  • Li, Z. L., J. X. Lin, T. Y. Zhang, N. Zhang, C. S. Mu & J. F. Wang, 2014. Effects of summer nocturnal warming on biomass production of Leymus chinensis in the Songnen Grassland of China: from bud bank and photosynthetic compensation. Journal of Agronomy and Crop Science 200(1): 66–76.

    Article  CAS  Google Scholar 

  • Liu, B., Z. M. Liu, L. X. Wang & Z. N. Wang, 2014. Responses of rhizomatous grass Phragmites communis to wind erosion: effects on biomass allocation. Plant and Soil 380(1–2): 389–398.

    Article  CAS  Google Scholar 

  • Lu, R. K., 2000. Methods of Agricultural and Chemical Analysis of Soils. Agricultural Science and Technology Press of China, Beijing: 12–163.

    Google Scholar 

  • Major, J. E., A. Mosseler, J. W. Malcolm & S. Heartz, 2017. Salinity tolerance of three Salix species: survival, biomass yield and allocation, and biochemical efficiencies. Biomass and Bioenergy 105: 10–22.

    Article  CAS  Google Scholar 

  • Małkowski, E., A. Kita, W. Galas, W. Karcz & J. M. Kuperbery, 2002. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regulation 37(1): 69–76.

    Article  Google Scholar 

  • Mitchell, L. & A. Karathanasis, 1995. Treatment of metal-chloride-enriched waste water by simulated constructed wetlands. Environmental Geochemistry Health 17(3): 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 2000. Wetlands. Wiley, New York.

    Google Scholar 

  • Mony, C., S. Puijalon & G. Bornette, 2011. Resprouting response of aquatic clonal plants to cutting may explain their resistance to spate flooding. Flia Geobotanica 46: 155–164.

    Article  Google Scholar 

  • Nishihiro, J., S. Araki, N. Fujiwara & I. Washitani, 2004. Germination characteristics of lakeshore plants under an artificially stabilized water regime. Aquatic Botany 79(4): 333–343.

    Article  Google Scholar 

  • Papazogloua, E. G., G. A. Karantouniasa, S. N. Vemmosb & D. L. Bouranis, 2005. Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environment International 31: 243–249.

    Article  CAS  Google Scholar 

  • Peverly, J. H., J. M. Surface & T. Wang, 1995. Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecological Engineering 5(1): 21–35.

    Article  Google Scholar 

  • Pezeshki, S. R., R. D. DeLaune & J. F. Meeder, 1997. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experiment Botany 37(2–3): 161–171.

    Article  CAS  Google Scholar 

  • Pietrini, F., M. A. Iannelli, S. Pasqualini & A. Massacci, 2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (cav.) trin. Ex steudel. Plant Physiology 133(2): 829–837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryser, P. & P. Emerson, 2007. Growth, root and leaf structure, and biomass allocation in Leucanthemum vulgare lam. (Asteraceae) as influenced by heavy-metal-containing slag. Plant and Soil 301(1–2): 315–324.

    Article  CAS  Google Scholar 

  • Salt, D. E., M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, D. Ensley, I. Chet & I. Raskin, 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology 13: 468–474.

    Article  CAS  Google Scholar 

  • Sharma, P. & R. S. Dubey, 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17(1): 35–52.

    Article  CAS  Google Scholar 

  • Taiz, L. & E. Zeiger, 2010. The response and adaptation to abiotic stress. In Green, L. & K. Emerson (eds), Plant Physiology, 5th ed. Sinauer Associates, Inc., Massachusetts: 605–616.

    Google Scholar 

  • Wang, P., S. Zhang, C. Wang & J. Lu, 2012. Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicology and Environmental Safety 78: 28–34.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y. & H. A. Lang, 1997. Study of population regulation of phragmites communis as a clonal plant in different ecological conditions. Acta Pratacult Sinica 7(2): 1–9.

    CAS  Google Scholar 

  • Ye, Z., A. Baker, M. Wong & A. J. Willis, 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by the Common reed, Phragmites australis (cav.) trin. Ex steudel. Annal of Botany 80(3): 363–370.

    Article  CAS  Google Scholar 

  • Ye, Z. H., M. H. Wong, A. J. M. Baker & A. J. Willis, 1998. Comparison of biomass and metal uptake between two populations of Phragmites australis grown in flooded and dry conditions. Annal of Botany 82(1): 83–87.

    Article  CAS  Google Scholar 

  • Ye, Z., A. Baker, M. Wong & A. J. Willis, 2003. Copper tolerance, uptake and accumulation by Phragmites australis. Chemosphere 50(6): 795–800.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz, D. D. & A. Aksoy, 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in sultan marsh (kayseri, turkey). Chemosphere 56(7): 685–696.

    Article  CAS  Google Scholar 

  • Zhang, J. T., C. S. Mu, D. L. Wang, J. Wang & J. Chen, 2009. Shoot population recruitment from a bud bank, over two seasons of undisturbed growth of Leymus chinensis. Canadian Journal of Botany 87: 1242–1249.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support from the Chinese Postdoctoral Science Foundation Funded Project (2017M621670), the National Key Basic Research Program of China (2015CB150801), the Open Fund of Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology (HPK201604 and HPK201705), the Independent Innovation Fund of Agricultural Science and Technology, Jiangsu Province (CX(16)1051), and the Open Project Program of the Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University (130028712).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunsheng Mu or Zhenhua Zhang.

Additional information

Handling editor: Chris Joyce

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Chen, J., Li, Z. et al. Strategies for lead distribution in organs of Phragmites australis (Cav.) Trin. ex Steud. (Common reed) subjected to Pb pollution in flood and drought environments. Hydrobiologia 819, 53–66 (2018). https://doi.org/10.1007/s10750-018-3629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3629-5

Keywords

Navigation