Artificial reefs for sea cucumber aquaculture confirmed as settlement substrates of the moon jellyfish Aurelia coerulea

  • Zhijun Dong
  • Lei Wang
  • Tingting Sun
  • Qingqing Liu
  • Youfang Sun
Primary Research Paper
  • 16 Downloads

Abstract

In coastal areas with a high intensity of human activities, expansion of artificial structures may enhance Aurelia spp. blooms because these constructions may provide additional substrates for the settlement and proliferation of the polyps. In the present study, the possible occurrence and distribution of Aurelia coerulea ephyrae and polyps were investigated in sea cucumber (Apostichopus japonicus) culture ponds that contain huge amounts of artificial structures. Our results showed that A. coerulea ephyrae were widely distributed in the A. japonicus culture ponds along the Bohai and Yellow Seas. Furthermore, underwater photography revealed that polyps of A. coerulea mainly occurred on the undersides of the artificial reefs made by plastic sunshade nets, tiles and substrate cages. The artificial reefs may decrease the time A. coerulea planulae spend settling, provide more hidden, calm and shady places for the settlement and proliferation of A. coerulea planulae, and thus were suitable substrates for the moon jellyfish A. coerulea. Our study suggests that the A. japonicus culture ponds may act as nursery grounds for the jellyfish A. coerulea and may potentially enhance the blooms of this species in the coastal waters along the Bohai and Yellow Seas.

Keywords

Jellyfish blooms Ephyrae Polyps Sea cucumber Aurelia coerulea 

Notes

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (No. 41576152), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA11020305), and the Science and Technology Service Network Initiative (STS) Project (No. KFJ-STS-ZDTP-023). Z.J.D. gratefully acknowledges the visiting scholarship programme from the China Scholarship Council and host from Dr. Kylie Pitt at Griffith University.

References

  1. Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.CrossRefGoogle Scholar
  2. Baxter, E. J., M. M. Sturt, N. M. Ruane, T. K. Doyle, R. McAllen, L. Harman & H. D. Rodger, 2011. Gill damage to Atlantic salmon (Salmo salar) caused by the common jellyfish (Aurelia aurita) under experimental challenge. PLoS ONE 6: e18529.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonnet, D., J. C. Molinero, T. Schohn & M. N. Daly Yahia, 2012. Seasonal changes in the population dynamics of Aurelia aurita in Thau lagoon. Cahiers de Biologie Marine 53: 343–347.Google Scholar
  4. Brewer, R. H., 1978. Larval settlement behavior in the jellyfish Aurelia aurita (Linnaeus) (Scyphozoa: Semaeostomeae). Estuaries 1: 120–122.CrossRefGoogle Scholar
  5. Bureau of Fisheries, 2016. China Fisheries Statistics Yearbook. Beijing, China.Google Scholar
  6. Chen, J., 2004. Present status and prospects of sea cucumber industry in China. In: FAO (ed),Advances in Sea Cucumber Aquaculture and Management. 25–38.Google Scholar
  7. Chen, Q. & Y. Zhu, 2012. Holocene evolution of bottom sediment distribution on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea. Sedimentary Geology 273: 58–72.CrossRefGoogle Scholar
  8. Conley, K. & S. I. Uye, 2015. Effects of hyposalinity on survival and settlement of moon jellyfish (Aurelia aurita) planulae. Journal of Experimental Marine Biology and Ecology 462: 14–19.CrossRefGoogle Scholar
  9. Dong, Z., D. Liu & J. K. Keesing, 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin 60: 954–963.CrossRefPubMedGoogle Scholar
  10. Dong, Z., D. Liu, Y. Wang, B. Di, X. Song & Y. Shi, 2012. A report on moon jellyfish Aurelia aurita bloom in Sishili bay, northern Yellow Sea of China in 2009. Aquatic Ecosystem Health & Management 15: 161–167.CrossRefGoogle Scholar
  11. Dong, Z., D. Liu & J. K. Keesing, 2014. Contrasting Trends in Populations of Rhopilema esculentum and Aurelia aurita in Chinese Waters in Jellyfish Blooms. Springer, Netherlands: 207–218.Google Scholar
  12. Dong, Z., T. Sun, Q. Liu & Y. Sun, 2017. High density aggregations of the Aurelia sp.1 ephyrae in a Chinese coastal aquaculture pond. Aquatic Ecosystem Health & Management 20: 465–471.Google Scholar
  13. Duarte, C. M., K. A. Pitt, C. H. Lucas, J. E. Purcell, S. I. Uye, K. Robinson, L. Brotz, M. B. Decker, K. R. Sutherland, A. Malej, L. Madin, H. Mianzan, J. M. Gili, V. Fuentes, D. Atienza, F. Pagés, D. Breitburg, J. Malek, W. M. Graham & R. H. Condon, 2012. Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and Evolution 11: 91–97.CrossRefGoogle Scholar
  14. Feng, S., S. W. Wang, G. T. Zhang, S. Sun & F. Zhang, 2017. Selective suppression of in situ proliferation of scyphozoan polyps by biofouling. Marine Pollution Bulletin 114: 1046–1056.CrossRefPubMedGoogle Scholar
  15. Hamner, W. & M. Dawson, 2009. A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616: 161–191.CrossRefGoogle Scholar
  16. Han, Q., J. K. Keesing & D. Liu, 2016. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. Reviews in Fisheries Science & Aquaculture 24: 326–341.CrossRefGoogle Scholar
  17. Holst, S. & G. Jarms, 2007. Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Marine Biology 151: 863–871.CrossRefGoogle Scholar
  18. Hoover, R. A. & J. E. Purcell, 2009. Substrate preferences of scyphozoan Aurelia labiata polyps among common dock-building materials. Hydrobiologia 616: 259–267.CrossRefGoogle Scholar
  19. Hoover, R. A., R. Armour, I. Dow & J. E. Purcell, 2012. Nudibranch predation and dietary preference for the polyps of Aurelia labiata (Cnidaria: Scyphozoa). Hydrobiologia 690: 199–213.CrossRefGoogle Scholar
  20. Ishii, H. & K. Katsukoshi, 2010. Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. Journal of Oceanography 66: 329–336.CrossRefGoogle Scholar
  21. Ishii, H., T. Ohba & T. Kobayashi, 2008. Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton and Benthos Research 3(Suppl): 107–113.CrossRefGoogle Scholar
  22. Lo, W. T., J. E. Purcell, J. J. Hung, H. M. Su & P. K. Hsu, 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES Journal of Marine Science 65: 453–461.CrossRefGoogle Scholar
  23. Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 243.CrossRefGoogle Scholar
  24. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.CrossRefGoogle Scholar
  25. Lucas, C. H., W. M. Graham & C. Widmer, 2012. Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Advances in Marine Biology 63: 133–196.CrossRefPubMedGoogle Scholar
  26. Makabe, R., R. Furukawa, M. Takao & S. Uye, 2014. Marine artificial structures as amplifiers of Aurelia aurita s.l. blooms: a case study of a newly installed floating pier. Journal of Oceanography 70: 447–455.CrossRefGoogle Scholar
  27. Malej, A., T. Kogovsek, A. Ramsak & L. Catenacci, 2012. Blooms and population dynamics of moon jellyfish in the northern Adriatic. Cahiers de Biologie Marine 53: 337–342.Google Scholar
  28. Marques, R., M. Cantou, S. Soriano, J. C. Molinero & D. Bonnet, 2015. Mapping distribution and habitats of Aurelia sp. polyps in Thau lagoon, north-western Mediterranean Sea (France). Marine Biology 162: 1441–1449.CrossRefGoogle Scholar
  29. Mitchell, S. O., E. J. Baxter & H. D. Rodger, 2011. Gill pathology in farmed salmon associated with the jellyfish Aurelia aurita. Veterinary Record 169: 609.CrossRefPubMedGoogle Scholar
  30. Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451–459.CrossRefGoogle Scholar
  31. Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.CrossRefPubMedGoogle Scholar
  32. Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.CrossRefGoogle Scholar
  33. Purcell, J. E., E. J. Baxter & V. Fuentes, 2013. Jellyfish as products and problems for aquaculture. In Allan, G. & G. Burnell (eds), Advances in Aquaculture Hatchery Technology. Elsevier, Amsterdam: 404–430.CrossRefGoogle Scholar
  34. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution 24: 312–322.CrossRefPubMedGoogle Scholar
  35. Rodger, H. D., K. Murphy, S. O. Mitchell & L. Henry, 2011. Gill disease in marine farmed Atlantic salmon at four farms in Ireland. Veterinary Record 168: 668.CrossRefPubMedGoogle Scholar
  36. Straehler-Pohl, I. & G. Jarms, 2010. Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia 645: 3–21.CrossRefGoogle Scholar
  37. Takao, M., H. Okawachi & S. I. Uye, 2014. Natural predators of polyps of Aurelia aurita sl (Cnidaria: Scyphozoa: Semaeostomeae) and their predation rates. Plankton and Benthos Research 9: 105–113.CrossRefGoogle Scholar
  38. Toyokawa, M., K. Aoki, S. Yamada, A. Yasuda, Y. Murata & T. Kikuchi, 2011. Distribution of ephyrae and polyps of jellyfish Aurelia aurita (Linnaeus 1758) sensu lato in Mikawa Bay, Japan. Journal of Oceanography 67: 209–218.CrossRefGoogle Scholar
  39. Uye, S., 2011. Human forcing of the copepod-fish-jellyfish triangular trophic relationship. Hydrobiologia 666: 71–83.CrossRefGoogle Scholar
  40. Vodopivec, M., A. Peliz & A. Malej, 2017. Offshore marine constructions as propagators of moon jellyfish dispersal. Environmental Research Letters 12: 084003.CrossRefGoogle Scholar
  41. Wang, Y. & S. Sun, 2015. Population dynamics of Aurelia sp.1 ephyrae and medusa in Jiaozhou Bay, China. Hydrobiologia 754: 147–155.CrossRefGoogle Scholar
  42. Wang, Y., D. Liu, Z. Dong, B. Di & X. Shen, 2012. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. Marine Pollution Bulletin 64: 2708–2719.CrossRefPubMedGoogle Scholar
  43. Watanabe, T. & H. Ishii, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan. Hydrobiologia 451: 247–258.CrossRefGoogle Scholar
  44. Willcox, S., N. A. Moltschaniwskyj & C. M. Crawford, 2008. Population dynamics of natural colonies of Aurelia sp. scyphistomae in Tasmania, Australia. Marine Biology 154: 661–670.CrossRefGoogle Scholar
  45. Xu, Q., L. Zhang, T. Zhang, X. Zhang & H. Yang, 2017. Functional groupings and food web of an artificial reef used for sea cucumber aquaculture in northern China. Journal of Sea Research 119: 1–7.CrossRefGoogle Scholar
  46. Yang, H., J. Hamel & A. Mercier, 2015. The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, New York.Google Scholar
  47. Zhang, L., X. Cai, S. Liu, D. Yang & Y. Zhou, 2013. Preliminary study on the annual variation of nutrients in Apostichopus japonicus aquaculture pond. Journal of Hydroecology 34: 37–43. (In Chinese).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhijun Dong
    • 1
  • Lei Wang
    • 1
    • 2
  • Tingting Sun
    • 1
  • Qingqing Liu
    • 1
    • 2
  • Youfang Sun
    • 3
  1. 1.Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouPeople’s Republic of China

Personalised recommendations