Canopy cover affects habitat selection by adult dragonflies

Primary Research Paper

Abstract

The mechanisms structuring aquatic communities across environmental gradients are often difficult to distinguish from one another and can produce similar patterns of species distributions. In freshwater systems, the amount of canopy cover from surrounding trees is often associated with transitions in local community structure. These community changes could be driven by habitat selection prior to colonization of the aquatic habitat and/or species-sorting post-colonization. To assess the contributions of pre- versus post-colonization processes in structuring larval dragonfly assemblages, we tested the impact of artificial and natural canopy cover on the selection of experimental aquatic mesocosms by adult dragonflies, and monitored the performance (i.e. growth and survival) of larval dragonflies that were placed in mesocosms under a gradient of natural canopy cover. We found that greater levels of canopy cover resulted in fewer adult visits to mesocosms, and more natural canopy cover decreased the species richness of visitors. There were no effects of canopy cover on the growth and survival of larvae added to the mesocosms. Our results suggest that adult habitat selection plays a dominant role in structuring larval dragonfly assemblages across a canopy cover gradient, and that canopy cover can be an important environmental filter on species distributions.

Keywords

Behaviour Forest cover Performance Aquatic–terrestrial linkages Odonata 

Notes

Acknowledgements

We are grateful to S. Catania and D. Frances for their assistance in field sampling, S. Schneider for his help in the construction of field equipment, and Koffler Scientific Reserve for research support. We thank H. Rodd, B. Gilbert, B. Raboy, P. Kotanen, and members of the McCauley lab for their comments during early stages of this manuscript. We also thank E. Werner and colleagues who participated in the ESGR survey for sharing their data with us. Funding was provided by the Departments of Ecology and Evolutionary Biology at the University of Toronto and Biology at University of Toronto Mississauga, the University of Toronto, a Queen Elizabeth II/Pfizer-Graduate Scholarship in Science and Technology to SKF, and a Natural Sciences and Engineering Research Council of Canada Doctoral Postgraduate Scholarship to SKF. Funding to SJM from the Canada Foundation for Innovation, the Ontario Research Fund (31974), and a Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGPIN435614) also supported this research.

Supplementary material

10750_2018_3600_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3711 kb)

References

  1. Ball-Damerow, J. E., L. K. M’Gonigle & V. H. Resh, 2014. Local and regional factors influencing assemblages of dragonflies and damselflies (Odonata) in California and Nevada. Journal of Insect Conservation 18: 1027–1036.CrossRefGoogle Scholar
  2. Balzan, M. V., 2012. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach. Journal of Insect Science 12: 1–18.CrossRefGoogle Scholar
  3. Bates, D., M. Mächler, B. M. Bolker & S. C. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  4. Batzer, D. P., B. J. Palik & R. Buech, 2004. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23: 50–68.CrossRefGoogle Scholar
  5. Bellemare, J., G. Motzkin & D. R. Foster, 2002. Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. Journal of Biogeography 29: 1401–1420.CrossRefGoogle Scholar
  6. Berendonk, T. U., 1999. Influence of fish kairomones on the ovipositing behavior of Chaoborus imagines. Limnology and Oceanography 44: 454–458.CrossRefGoogle Scholar
  7. Bernáth, B., G. Szedenics, H. Wildermuth & G. Horváth, 2002. How can dragonflies discern bright and dark waters from a distance? The degree of polarisation of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biology 47: 1707–1719.CrossRefGoogle Scholar
  8. Binckley, C. A. & W. J. Resetarits Jr., 2003. Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102: 623–629.CrossRefGoogle Scholar
  9. Binckley, C. A. & W. J. Resetarits Jr., 2005. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biology Letters 1: 370–374.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Binckley, C. A. & W. J. Resetarits Jr., 2007. Effects of forest canopy on habitat selection in treefrogs and aquatic insects: implications for communities and metacommunities. Oecologia 153: 951–958.CrossRefPubMedGoogle Scholar
  11. Binckley, C. A. & W. J. Resetarits Jr., 2009. Spatial and temporal dynamics of habitat selection across canopy gradients generates patterns of species richness and composition in aquatic beetles. Ecological Entomology 34: 457–465.CrossRefGoogle Scholar
  12. Boyce, M. S., J. S. Mao, E. H. Merrill, D. Fortin, M. G. Turner, J. Fryxell & P. Turchin, 2003. Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Écoscience 10: 421–431.CrossRefGoogle Scholar
  13. Bried, J. T., B. J. Hager, P. D. Hunt, J. N. Fox, H. J. Jensen & K. M. Vowels, 2012. Bias of reduced-effort community surveys for adult Odonata of lentic waters. Insect Conservation and Diversity 5: 213–222.CrossRefGoogle Scholar
  14. Briscoe, A. D. & L. Chittka, 2001. The evolution of color vision in insects. Annual Review of Entomology 46: 471–510.CrossRefPubMedGoogle Scholar
  15. Brodin, T., F. Johansson & J. Bergsten, 2006. Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history. Freshwater Biology 51: 1277–1285.CrossRefGoogle Scholar
  16. Buchwald, R., 1994. Experimentelle untersuchungen zu habitatselektion und biotopbindung bei Ceriagrion tenellum De Villers, 1789 (Coenagrionidae, Odonata). Zoologische Jahrbücher Abteilung für Systematik, Ökologie Und Geographie Der Tiere 121: 71–98.Google Scholar
  17. Catling, P. M., 2007. Variation of hind-wing colour and length in Sympetrum internum (Odonata: Libellulidae) from the Canadian prairie provinces. Canadian Entomologist 139: 872–880.CrossRefGoogle Scholar
  18. Corbet, P. S., 1962. A biology of dragonflies. Witherby, Warwick UK.Google Scholar
  19. Corbet, P. S., 2004. Dragonflies: behaviour and ecology of Odonata. Harley Books, Colchester UK.Google Scholar
  20. De Marco Jr., P., J. D. Batista & H. S. R. Cabette, 2015. Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS ONE 10: e0123023.CrossRefGoogle Scholar
  21. Dolný, A., F. Harabiš, D. Bárta, S. Lhota & P. Drozd, 2012. Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of East Kalimantan. Tropical Zoology 25: 141–157.CrossRefGoogle Scholar
  22. Earl, J. E. & R. D. Semlitsch, 2013. Spatial subsidies, trophic state, and community structure: examining the effects of leaf litter input on ponds. Ecosystems 16: 639–651.CrossRefGoogle Scholar
  23. Flenner, I., O. Richter & F. Suhling, 2010. Rising temperature and development in dragonfly populations at different latitudes. Freshwater Biology 55: 397–410.CrossRefGoogle Scholar
  24. Fontaine, J. J. & T. E. Martin, 2006. Habitat selection responses of parents to offspring predation risk: an experimental test. The American Naturalist 168: 811–818.CrossRefPubMedGoogle Scholar
  25. Foster, D. R., G. Motzkin & B. Slater, 1998. Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems 1: 96–119.CrossRefGoogle Scholar
  26. Foster, S. E. & D. A. Soluk, 2006. Protecting more than the wetland: the importance of biased sex ratios and habitat segregation for conservation of the Hine’s emerald dragonfly, Somatochlora hineana Williamson. Biological Conservation 127: 158–166.CrossRefGoogle Scholar
  27. Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen & J. Sibert, 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233–249.CrossRefGoogle Scholar
  28. Frances, D. N., J. Y. Moon & S. J. McCauley, 2017. Effects of environmental warming during early life history on libellulid odonates. Canadian Journal of Zoology 95: 373–382.CrossRefGoogle Scholar
  29. Garcia, E. A. & G. G. Mittelbach, 2008. Regional coexistence and local dominance in Chaoborus: species sorting along a predation gradient. Ecology 89: 1703–1713.CrossRefPubMedGoogle Scholar
  30. Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice & J. R. G. Townshend, 2013. High-resolution global maps of 21st-century forest cover change. Science 342: 850–853.CrossRefPubMedGoogle Scholar
  31. Horváth, G., 1995. Reflection-polarization patterns at flat water surfaces and their relevance for insect polarization vision. Journal of Theoretical Biology 175: 27–37.CrossRefPubMedGoogle Scholar
  32. Horváth, G., B. Bernáth & G. Molnár, 1998. Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85: 292–297.CrossRefGoogle Scholar
  33. Horváth, G., P. Malik, G. Kriska & H. Wildermuth, 2007. Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biology 52: 1700–1709.CrossRefGoogle Scholar
  34. Jacobs, M. E., 1955. Studies on territorialism and sexual selection in dragonflies. Ecology 36: 566–586.CrossRefGoogle Scholar
  35. Keller, D., M. J. van Strien & R. Holderegger, 2012. Do landscape barriers affect functional connectivity of populations of an endangered damselfly? Freshwater Biology 57: 1373–1384.CrossRefGoogle Scholar
  36. Knorp, N. E. & N. J. Dorn, 2016. Mosquitofish predation and aquatic vegetation determine emergence patterns of dragonfly assemblages. Freshwater Science 35: 114–125.CrossRefGoogle Scholar
  37. Kriska, G., B. Bernáth, R. Farkas & G. Horváth, 2009. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). Journal of Insect Physiology 55: 1167–1173.CrossRefPubMedGoogle Scholar
  38. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  39. Lima, S. L. & P. A. Zollner, 1996. Towards a behavioral ecology of ecological landscapes. Trends in Ecology & Evolution 11: 131–135.CrossRefGoogle Scholar
  40. Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, P. Declerck, A. Flohre, S. Gantner, N. Gülzow, P. Hörtnagl, S. Meier & B. Pecceu, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution 26: 482–491.CrossRefGoogle Scholar
  41. Luke, S. H., R. A. Dow, S. Butler, C. V. Khen, D. C. Aldridge, W. A. Foster & E. C. Turner, 2017. The impacts of habitat disturbance on adult and larval dragonflies (Odonata) in rainforest streams in Sabah, Malaysian Borneo. Freshwater Biology 62: 491–506.CrossRefGoogle Scholar
  42. McCauley, S. J., 2005a. Species distributions in anisopteran odonates: effects of local and regional processes. PhD thesis. University of Michigan, Ann Arbor MI.Google Scholar
  43. McCauley, S. J., 2005b. Relationship between habitat distribution, growth rate, and plasticity in congeneric larval dragonflies. Canadian Journal of Zoology 83: 1128–1133.CrossRefGoogle Scholar
  44. McCauley, S. J., 2006. The effects of dispersal and recruitment limitation on community structure of odonates in artificial ponds. Ecography 29: 585–595.CrossRefGoogle Scholar
  45. McCauley, S. J., 2007. The role of local and regional processes in structuring larval dragonfly distributions across habitat gradients. Oikos 116: 121–133.CrossRefGoogle Scholar
  46. McCauley, S. J., 2008. Slow, fast and in between: habitat distribution and behaviour of larvae in nine species of libellulid dragonfly. Freshwater Biology 53: 253–263.Google Scholar
  47. McCauley, S. J., C. J. Davis, R. A. Relyea, K. L. Yurewicz, D. K. Skelly & E. E. Werner, 2008. Metacommunity patterns in larval odonates. Oecologia 158: 329–342.CrossRefPubMedGoogle Scholar
  48. McPeek, M. A., 1989. Differential dispersal tendencies among Enallagma damselflies (Odonata) inhabiting different habitats. Oikos 56: 187–195.CrossRefGoogle Scholar
  49. Meyer, E. P. & T. Labhart, 1993. Morphological specializations of dorsal rim ommatidia in the compound eye of dragonflies and damselflies (Odonata). Cell Tissue Research 272: 17–22.CrossRefGoogle Scholar
  50. Michiels, N. K. & A. A. Dhondt, 1990. Costs and benefits associated with oviposition site selection in the dragonfly Sympetrum danae (Odonata: Libellulidae). Animal Behaviour 40: 668–678.CrossRefGoogle Scholar
  51. Monteiro-Júnior, C. S., L. Juen & N. Hamada, 2014. Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landscape and Urban Planning 127: 28–40.CrossRefGoogle Scholar
  52. Pohlert, T., 2014. The pairwise multiple comparison of mean ranks package (PMCMR). R package. http://CRAN.R-project.org/package=PMCMR.
  53. Pritchard, G., L. D. Harder & R. A. Mutch, 1996. Development of aquatic insect eggs in relation to temperature and strategies for dealing with different thermal environments. Biological Journal of the Linnean Society 58: 221–244.CrossRefGoogle Scholar
  54. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  55. Remsburg, A. J., A. C. Olson & M. J. Samways, 2008. Shade alone reduces adult dragonfly (Odonata: Libellulidae) abundance. Journal of Insect Behavior 21: 460–468.CrossRefGoogle Scholar
  56. Remsburg, A. J. & M. G. Turner, 2009. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. Journal of the North American Benthological Society 28: 44–56.CrossRefGoogle Scholar
  57. Resetarits Jr., W. J., 2005. Habitat selection behaviour links local and regional scales in aquatic systems. Ecology Letters 8: 480–486.CrossRefPubMedGoogle Scholar
  58. Richardson, J. S., 2008. Aquatic arthropods and forestry: effects of large-scale land use on aquatic systems in Nearctic temperate regions. Canadian Entomologist 140: 495–509.CrossRefGoogle Scholar
  59. Rieger, J. F., C. A. Binckley & W. J. Resetarits Jr., 2004. Larval performance and oviposition site preference along a predation gradient. Ecology 85: 2094–2099.CrossRefGoogle Scholar
  60. Rothermel, B. B. & R. D. Semlitsch, 2002. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conservation Biology 16: 1324–1332.CrossRefGoogle Scholar
  61. Samways, M. J., 2003. Threats to the tropical island dragonfly fauna (Odonata) of Mayotte, Comoro archipelago. Biodiversity and Conservation 12: 1785–1792.CrossRefGoogle Scholar
  62. Samways, M. J. & N. J. Sharratt, 2010. Recovery of endemic dragonflies after removal of invasive alien trees. Conservation Biology 24: 267–277.CrossRefPubMedGoogle Scholar
  63. Schiesari, L., 2006. Pond canopy cover: a resource gradient for anuran larvae. Freshwater Biology 51: 412–423.CrossRefGoogle Scholar
  64. Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schooley, R. L. & J. A. Wiens, 2003. Finding habitat patches and directional connectivity. Oikos 102: 559–570.CrossRefGoogle Scholar
  66. Schtickzelle, N., A. Joiris, H. Van Dyck & M. Baguette, 2007. Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BMC Evolutionary Biology 7: 1–15.CrossRefGoogle Scholar
  67. Semlitsch, R. D. & J. R. Bodie, 1998. Are small, isolated wetlands expendable? Conservation Biology 12: 1129–1133.CrossRefGoogle Scholar
  68. Skaug, H. J., D. A. Fournier, A. Nielsen, A. Magnusson & B. M. Bolker, 2012. Generalized linear mixed models using AD Model Builder. R package version 0.7.2.12.Google Scholar
  69. Skelly, D. K., S. R. Bolden & L. K. Freidenburg, 2014. Experimental canopy removal enhances diversity of vernal pond amphibians. Ecological Applications 24: 340–345.CrossRefPubMedGoogle Scholar
  70. Skelly, D. K., L. K. Freidenburg & J. M. Kiesecker, 2002. Forest canopy and the performance of larval amphibians. Ecology 83: 983–992.CrossRefGoogle Scholar
  71. Smith, J., M. J. Samways & S. Taylor, 2007. Assessing riparian quality using two complementary sets of bioindicators. Biodiversity and Conservation 16: 2695–2713.CrossRefGoogle Scholar
  72. Stastny, M., A. Battisti, E. Petrucco-Toffolo, F. Schlyter & S. Larsson, 2006. Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological Entomology 31: 481–490.CrossRefGoogle Scholar
  73. Switzer, P. V., 2002. Territory quality, habitat selection, and competition in the amberwing dragonfly, Perithemis tenera (Say) (Odonata: Libellulidae): population patterns as a consequence of individual behaviour. Journal of the Kansas Entomological Society 75: 145–157.Google Scholar
  74. Switzer, P. V. & W. Walters, 1999. Choice of lookout posts by territorial amberwing dragonflies, Perithemis tenera (Anisoptera: Libellulidae). Journal of Insect Behavior 12: 385–398.CrossRefGoogle Scholar
  75. Van Buskirk, J., 1986. Establishment and organization of territories in the dragonfly Sympetrum rubicundulum (Odonata: Libellulidae). Animal Behaviour 34: 1781–1790.CrossRefGoogle Scholar
  76. Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time – the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.CrossRefGoogle Scholar
  77. Vitt, L. J. & J. P. Caldwell, 2014. Herpetology: an introductory biology of amphibians and reptiles, 4th ed. Academic Press, Waltham MA.Google Scholar
  78. Vonesh, J. R., J. M. Kraus, J. S. Rosenberg & J. M. Chase, 2009. Predator effects on aquatic community assembly: disentangling the roles of habitat selection and post-colonization processes. Oikos 118: 1219–1229.CrossRefGoogle Scholar
  79. Werner, E. E. & K. S. Glennemeier, 1999. Influence of forest canopy cover on the breeding pond distributions of several amphibian species. Copeia 1999: 1–12.CrossRefGoogle Scholar
  80. Wildermuth, H., 1994. Habitatselektion bei Libellen. Advances in Odonatology 6: 223–257.Google Scholar
  81. Wildermuth, H., 1998. Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85: 297–302.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Toronto MississaugaMississaugaCanada
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada

Personalised recommendations