, Volume 818, Issue 1, pp 119–127 | Cite as

Differential vulnerability of two sympatric tadpoles to an invasive crayfish predator

  • Noelikanto Ramamonjisoa
  • Harisoa Rakotonoely
  • Yosihiro Natuhara
Primary Research Paper


Many amphibian population declines have been associated with the introduction of alien aquatic predators. Here, we explore the vulnerability of tadpoles of two sympatric Japanese species [Pelophylax nigromaculatus (PN) and Rhacophorus schlegelii (RS)] to the invasive crayfish Procambarus clarkii. We first examined the behavioral responses of the tadpoles to the cues of caged, fed crayfish predator in a controlled laboratory experiment, and subsequently tested their survival when together in the presence of free-ranging predator in outdoor mesocosms that simulated natural ponds. Only PN reduced activity level to the cues of the predator, but this apparent behavioral defense recorded in the laboratory did not result into higher survival in outdoor mesocosms. In mesocosms, PN exhibited higher biomass increment but experienced higher mortality in predator environments. The mechanism mediating mortality remains unclear though. These results indicate that sympatric prey may differentially respond and be disproportionally vulnerable to novel predators. Our study illustrates the possible contribution of a life-history trait influencing risk of predation in newly invaded systems.


Life-history trait Procambarus clarkii Predator–prey interactions Novel predator Behavioral defense 



The study was supported by the Japanese Society for the Promotion of Science KAKENHI Grant Number 26640137. We are grateful to two anonymous reviewers whose comments greatly improved the manuscript. We thank Koichi Nishimura, Yuka Tamura, and Kosuke Nakanishi for their help in collecting the subjects used in the experiments. Martina Muller provided constructive comments at an earlier draft of the manuscript. The experiments comply with the current laws of Japan concerning the collection, transport, and the use of live animals.


  1. Bates, D. M., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  2. Bellard, C., P. Cassey & T. M. Blackburn, 2016. Alien species as a driver of recent extinctions. Biology letters 12: 20150623.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brodie Jr., E. D. & D. R. Formanowicz Jr., 1983. Prey size preference of predators: differential vulnerability of larval anurans. Herpetologica 39: 67–75.Google Scholar
  4. Cox, J. G. & S. L. Lima, 2006. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends in Ecology & Evolution 21: 674–680.CrossRefGoogle Scholar
  5. Crump, M. L. & M. Vaira, 1991. Vulnerability of Pleurodema borelli tadpoles to an avian predator: effect of body size and density. Herpetologica 47: 316–321.Google Scholar
  6. Cruz, M. J. & R. Rebelo, 2005. Vulnerability of Southwest Iberian amphibians to an introduced crayfish, Procambarus clarkii. Amphibia-Reptilia 26: 293–303.CrossRefGoogle Scholar
  7. Cruz, J. M., R. Rebelo & E. G. Crespo, 2006. Effects of an introduced crayfish, Procambarus clarkii, on the distribution of south-western Iberian amphibians in their breeding habitats. Ecography 29: 329–338.CrossRefGoogle Scholar
  8. Dayton, G. H., D. Saenz, K. A. Baum, R. B. Langerhans & T. J. DeWitt, 2005. Body shape, burst speed and escape behavior of larval anurans. Oikos 111: 582–591.CrossRefGoogle Scholar
  9. Erguler, K., 2016. Barnard: barnard’s unconditional test. R package version 1.8.
  10. Ferrari, M. C., B. D. Wisenden & D. P. Chivers, 2010. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. The present review is one in the special series of reviews on animal-plant interactions. Canadian Journal of Zoology 88: 698–724.CrossRefGoogle Scholar
  11. Fukasawa, K., T. Miyashita, T. Hashimoto, M. Tatara & S. Abe, 2013. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting. Proceedings of the Royal Society of London B: Biological Sciences 280: 20132075.CrossRefGoogle Scholar
  12. Gherardi, F. & S. Barbaresi, 2000. Spatial and temporal patterns in the movement of Procambarus clarkii, an invasive crayfish. Aquatic Science 62: 179–193.Google Scholar
  13. Gherardi, F. & S. Barbaresi, 2007. Feeding preferences of the invasive crayfish, Procambarus clarkii. Bulletin Français de la Pêche et de la Pisciculture 387: 7–20.CrossRefGoogle Scholar
  14. Gherardi, F. & S. Barbaresi, 2008. Feeding opportunism of the red swamp crayfish Procambarus clarkii, an invasive species. Freshwater Crayfish 16: 77–85.Google Scholar
  15. Gherardi, F., B. Renai & C. Corti, 2001. Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bulletin Français de la Pêche et de la Pisciculture 361: 659–668.CrossRefGoogle Scholar
  16. Gomez-Mestre, I. & C. Díaz-Paniagua, 2011. Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proceedings of the Royal Society of London B: Biological Sciences 278: 3364–3370.CrossRefGoogle Scholar
  17. Gonçalves, V., F. Gherardi & R. Rebelo, 2017. Bivalve or gastropod? Using profitability estimates to predict prey choice by Procambarus clarkii. Acta Ethologica 20: 107–117.CrossRefGoogle Scholar
  18. Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.Google Scholar
  19. Halekoh, U. & S. Højsgaard, 2014. A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest. Journal of Statistical Software 59: 1–30.CrossRefGoogle Scholar
  20. Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170.CrossRefGoogle Scholar
  21. Iwata, T. & M. Fukioka, 2006. Effects of winter flooding on aquatic fauna in lotus and rice fields during the growing season. Japanese Journal of Conservation Ecology 11: 94–104.Google Scholar
  22. Jones, H. P., B. R. Tershy, E. S. Zavaleta, D. A. Croll, B. S. Keitt, M. E. Finkelstein & G. R. Howald, 2008. Severity of the effects of invasive rats on seabirds: a global review. Conservation Biology 22(1): 16–26.CrossRefPubMedGoogle Scholar
  23. Jones, P. E. & G. P. Closs, 2015. Life history influences the vulnerability of New Zealand galaxiids to invasive salmonids. Freshwater Biology 60: 2127–2141.CrossRefGoogle Scholar
  24. Kats, L. B. & R. P. Ferrer, 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distributions 9(2): 99–110.CrossRefGoogle Scholar
  25. Kishida, O., A. Tezuka, A. Ikeda, K. Takatsu & H. Michimae, 2015. Adaptive acceleration in growth and development of salamander hatchlings in cannibalistic situations. Functional Ecology 29(4): 469–478.CrossRefGoogle Scholar
  26. Lenth, R. V., 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software 69: 1–33.CrossRefGoogle Scholar
  27. Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619–640.CrossRefGoogle Scholar
  28. Lodge, D. M., R. A. Stein, K. M. Brown, A. P. Covich, C. Brönmark, J. E. Garvey & S. P. Klosiewskt, 1998. Predicting impact of freshwater exotic species on native biodiversity: challenges in spatial scaling. Austral Ecology 23: 53–67.CrossRefGoogle Scholar
  29. Matsui, M. & S. Seki, 2008. Handook of the larvae of frogs, salamanders, and newts in Japan (in Japanese). Bun-ichi Sougo Shuppan, Tokyo.Google Scholar
  30. Matsuzaki, S., A. Terui, K. Kodama, M. Tada, T. Yoshida & I. Washitani, 2011. Influence of connectivity, habitat quality and invasive species on egg and larval distributions and local abundance of crucian carp in Japanese agricultural landscapes. Biological Conservation 144: 2081–2087.CrossRefGoogle Scholar
  31. McPeek, M. A., 2004. The growth/predation risk trade-off: so what is the mechanism? The American Naturalist 163: E88–E111.CrossRefPubMedGoogle Scholar
  32. Mirza, R. S., M. C. Ferrari, J. M. Kiesecker & D. P. Chivers, 2006. Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour 143: 877–889.CrossRefGoogle Scholar
  33. Nunes, A. L., A. Richter-Boix, A. Laurila & R. Rebelo, 2013. Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia 171: 115–127.CrossRefPubMedGoogle Scholar
  34. Nunes, A. L., G. Orizaola, A. Laurila & R. Rebelo, 2014. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95: 1520–1530.CrossRefPubMedGoogle Scholar
  35. Ohba, S., 2011. Impact of the invasive crayfish Procambarus clarkii on the giant water bug Kirkaldya deyrolli (Hemiptera) in rice ecosystems Japanese. Journal of Environmental Entomology and Zoology 22: 93–98.Google Scholar
  36. Olden, J. D., N. L. Poff & K. R. Bestgen, 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76: 25–40.CrossRefGoogle Scholar
  37. Pearl, C. A., M. J. Adams, G. S. Schuytema & A. V. Nebeker, 2003. Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States. Journal of Herpetology 37: 572–576.CrossRefGoogle Scholar
  38. Pease, K. M. & R. K. Wayne, 2014. Divergent responses of exposed and naive Pacific tree frog tadpoles to invasive predatory crayfish. Oecologia 174: 241–252.CrossRefPubMedGoogle Scholar
  39. Polo-Cavia, N. & I. Gomez-Mestre, 2014. Learned recognition of introduced predators determines survival of tadpole prey. Functional Ecology 28: 432–439.CrossRefGoogle Scholar
  40. Pueta, M. & M. G. Perotti, 2016. Anuran tadpoles learn to recognize injury cues from members of the same prey guild. Animal Cognition 19: 745–751.CrossRefPubMedGoogle Scholar
  41. R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Scholar
  42. Ramamonjisoa, N. & Y. Natuhara, 2017. Hierarchical competitive ability and phenotypic investments in prey: inferior competitors compete and defend. Journal of Zoology 301: 157–164.CrossRefGoogle Scholar
  43. Renai, B. & F. Gherardi, 2004. Predatory efficiency of crayfish: comparison between indigenous and non-indigenous species. Biological Invasions 6: 89–99.CrossRefGoogle Scholar
  44. Salo, P., E. Korpimäki, P. B. Banks, M. Nordström & C. R. Dickman, 2007. Alien predators are more dangerous than native predators to prey populations. Proceedings of the Royal Society of London B: Biological Sciences 274: 1237–1243.CrossRefGoogle Scholar
  45. Schlaepfer, M. A., P. W. Sherman, B. Blossey & M. C. Runge, 2005. Introduced species as evolutionary traps. Ecology Letters 8: 241–246.CrossRefGoogle Scholar
  46. Schoeppner, N. M. & R. A. Relyea, 2008. Detecting small environmental differences: risk-response curves for predator-induced behavior and morphology. Oecologia 154: 743–754.CrossRefPubMedGoogle Scholar
  47. Semlitsch, R. & M. D. Boone, 2010. Aquatic mesocosms. In Dodd, C. K. J. (ed.), Amphibian Ecology and Conservation. Oxford University Press, New York: 87–104.Google Scholar
  48. Sih, A., D. I. Bolnick, B. Luttbeg, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. Preisser, J. S. Rehage & J. R. Vonesh, 2010. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621.CrossRefGoogle Scholar
  49. Simberloff, D., J.-L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou & M. Pascal, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28: 58–66.CrossRefGoogle Scholar
  50. Smith, G. R., H. A. Dingfelder & D. A. Vaala, 2004. Asymmetric competition between Rana clamitans and Hyla versicolor tadpoles. Oikos 105: 626–632.CrossRefGoogle Scholar
  51. Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman & R. W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306(5702): 1783–1786.CrossRefPubMedGoogle Scholar
  52. The Ecological Society of Japan, 2002. Handbook of Alien Species in Japan. Chijin Shokan, Tokyo.Google Scholar
  53. Therneau, T. M., 2015. coxme: mixed effects cox models. R package version 2.2-5 [available on internet at].
  54. Urban, M. C., 2007. The growth-predation risk trade-off under a growing gape-limited predation threat. Ecology 88: 2587–2597.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  2. 2.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan

Personalised recommendations