Skip to main content
Log in

Promotive performance of shrimp Neocaridina denticulata on Typha angustifolia leaf litter decomposition

  • COASTAL WETLANDS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Litter decomposition plays a crucial role in aquatic food webs. In the present study, we used a specially designed bucket, at the middle height of which a 1-mm nylon mesh was set, to investigate the direct (grazing) and indirect (feces) effects of shrimp Neocaridina denticulata on the decomposition of Typha angustifolia litters. During the 140-day decomposition period, the net overall effects of shrimp enhanced decomposition by 63.5%, which amounted to 32.8% of mass loss. Shrimp grazing contributed 81.7% of the enhanced decomposition, whereas feces contributed 18.5%. The early stage displayed the net effect of feces, whereas in the final days, it was mainly attributed to intensive grazing, which maintained litter breakdown at high speed. The presence of shrimp greatly improved the hydrolytic extracellular enzyme activities, especially peroxidase and phenol oxidase. Meanwhile, the presence of shrimp greatly enriched the water nutrients, total phosphorus in particular. However, selective absorption of NH4+-N by microorganisms caused its shortage for decomposers, suggesting their great demands for NH4+. Redundancy analysis showed that water physical and chemical properties could explain 73.5% of the variation of enzymatic activities. Besides directly grazing of shrimp, the main factors affecting decomposition were enzymatic activities in the absence of shrimp, while in the presence of shrimp, the factors changed to water physical and chemical properties (mainly pH, total nitrogen, and phosphorus, and NO3-N). Our results demonstrated that some aquatic animals, like shrimp, not only breakdown leaf litters by grazing, but also stimulate the microbial activities by their byproducts such as feces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison, S. D. & P. M. Vitousek, 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry 37: 937–944.

    Article  CAS  Google Scholar 

  • Astudillo, M. R., A. Ramirez, R. Novelo-Gutierrez & G. Vazquez, 2014. Leaf litter decomposition in six Cloud Forest streams of the upper La Antigua watershed, Veracruz, Mexico. Revista de Biología Tropical/International Journal of Tropical Biology and Conservation 62: 111–127.

    Article  Google Scholar 

  • Benstead, J. P., A. D. Rosemond, W. F. Cross, J. B. Wallace, S. L. Eggert, K. Suberkropp, V. Gulis, J. L. Greenwood & C. J. Tant, 2009. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 90: 2556–2566.

    Article  Google Scholar 

  • Coulis, M., S. Hattenschwiler, N. Fromin & J. F. David, 2013. Macroarthropod-microorganism interactions during the decomposition of Mediterranean shrub litter at different moisture levels. Soil Biology and Biochemistry 64: 114–121.

    Article  CAS  Google Scholar 

  • Crowl, T. A., W. H. McDowell, A. P. Covich & S. L. Johnson, 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82: 775–783.

    Article  Google Scholar 

  • Crowl, T. A., V. Welsh, T. Heartsill-Scalley & A. P. Covich, 2006. Effects of different types of conditioning on rates of leaf-litter shredding by Xiphocaris elongata, a Neotropical freshwater shrimp. Journal of the North American Benthological Society 25: 198–208.

    Article  Google Scholar 

  • Crowther, T. W., L. Boddy & T. H. Jones, 2011a. Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecology Letters 14: 1134–1142.

    Article  Google Scholar 

  • Crowther, T. W., T. H. Jones, L. Boddy & P. Baldrian, 2011b. Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biology and Biochemistry 43: 2060–2068.

    Article  CAS  Google Scholar 

  • Crowther, T. W., D. W. G. Stanton, S. M. Thomas, A. D. A’Bear, J. Hiscox, T. H. Jones, J. Voriskova, P. Baldrian & L. Boddy, 2013. Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology 94: 2518–2528.

    Article  Google Scholar 

  • Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.

    Article  Google Scholar 

  • Ferreira, V. & E. Chauvet, 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.

    Article  Google Scholar 

  • Ferreira, V., J. Castela, P. Rosa, A. M. Tonin, L. Boyero & M. A. S. Graca, 2016. Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquatic Ecology 50: 711–725.

    Article  CAS  Google Scholar 

  • Franken, R. J. M., B. Waluto, E. T. H. M. Peeters, J. J. P. Gardeniers, J. A. J. Beijer & M. Scheffer, 2005. Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshwater Biology 50: 459–466.

    Article  Google Scholar 

  • Frost, C. J. & M. D. Hunter, 2004. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85: 3335–3347.

    Article  Google Scholar 

  • Garcia-Palacios, P., F. T. Maestre, J. Kattge & D. H. Wall, 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16: 1045–1053.

    Article  Google Scholar 

  • Gessner, M. O., C. M. Swan, C. K. Dang, B. G. Mckie, R. D. Bardgett, D. H. Wall & S. Hattenschwiler, 2010. Diversity meets decomposition. Trends in Ecology & Evolution 25: 372–380.

    Article  Google Scholar 

  • Goncalves, A. L., E. Chauvet, F. Barlocher, M. A. S. Graca & C. Canhoto, 2014. Top-down and bottom-up control of litter decomposers in streams. Freshwater Biology 59: 2172–2182.

    Article  Google Scholar 

  • Graca, M. A. S., K. Hyde & E. Chauvet, 2016. Aquatic hyphomycetes and litter decomposition in tropical – subtropical low order streams. Fungal Ecology 19: 182–189.

    Article  Google Scholar 

  • Grace, J. B. & J. S. Harrison, 1986. The biology of canadian weeds. 73. Typha-Latifolia L., Typha-Angustifolia L. and Typha-Xglauca Godr. Canadian Journal of Plant Science 66: 361–379.

    Article  Google Scholar 

  • Hai, T. N. & A. Yakupitiyage, 2005. The effects of the decomposition of mangrove leaf litter on water quality, growth and survival of black tiger shrimp (Penaeus monodon Fabricius, 1798). Aquaculture 250: 700–712.

    Article  Google Scholar 

  • Huang, D. J., S. Y. Wang & H. C. Chen, 2004. Effects of the endocrine disrupter chemicals chlordane and lindane on the male green neon shrimp (Neocaridina denticulata). Chemosphere 57: 1621–1627.

    Article  CAS  Google Scholar 

  • Jia, Y. Y., Y. N. Lv, X. S. Kong, X. Q. Jia, K. Tian, J. J. Du & X. J. Tian, 2015. Insight into the indirect function of isopods in litter decomposition in mixed subtropical forests in China. Applied Soil Ecology 86: 174–181.

    Article  Google Scholar 

  • Jinggut, T. & C. M. Yule, 2015. Leaf-litter breakdown in streams of East Malaysia (Borneo) along an altitudinal gradient: initial nitrogen content of litter limits shredder feeding. Freshwater Science 34: 691–701.

    Article  Google Scholar 

  • Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.

    Article  Google Scholar 

  • Madritch, M. D., J. R. Donaldson & R. L. Lindroth, 2007. Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biology and Biochemistry 39: 1192–1201.

    Article  CAS  Google Scholar 

  • Makkonen, M., M. P. Berg, I. T. Handa, S. Hattenschwiler, J. van Ruijven, P. M. van Bodegom & R. Aerts, 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters 15: 1033–1041.

    Article  Google Scholar 

  • Meyer, W. M., R. Ostertag & R. H. Cowie, 2011. Macro-invertebrates accelerate litter decomposition and nutrient release in a Hawaiian rainforest. Soil Biology and Biochemistry 43: 206–211.

    Article  CAS  Google Scholar 

  • Mooshammer, M., W. Wanek, I. Hammerle, L. Fuchslueger, F. Hofhansl, A. Knoltsch, J. Schnecker, M. Takriti, M. Watzka, B. Wild, K. M. Keiblinger, S. Zechmeister-Boltenstern & A. Richter, 2014. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature Communications 5.

  • Mora-Gomez, J., A. Elosegi, S. Duarte, F. Cassio, C. Pascoal & A. M. Romani, 2016. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiology Letters 92.

    Article  Google Scholar 

  • Moulton, T. P., S. A. P. Magalhaes-Fraga, E. F. Brito & F. A. Barbosa, 2010. Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil. Hydrobiologia 638: 55–66.

    Article  Google Scholar 

  • Ocasio-Torres, M. E., T. A. Crowl & A. M. Sabat, 2015. Effects of the presence of a predatory fish and the phenotype of its prey (a shredding shrimp) on leaf litter decomposition. Freshwater Biology 60: 2286–2296.

    Article  Google Scholar 

  • Olson, J. S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Article  Google Scholar 

  • Pu, G. Z., J. J. Tong, A. M. Su, X. Ma, J. J. Du, Y. N. Lv & X. J. Tian, 2014. Adaptation of microbial communities to multiple stressors associated with litter decomposition of Pterocarya stenoptera. Journal of Environmental Sciences 26: 1001–1013.

    Article  CAS  Google Scholar 

  • Raposeiro, P. M., V. Ferreira, R. Guri, V. Gonçalves & G. M. Martins, 2017. Leaf litter decomposition on insular lentic systems: effects of macroinvertebrate presence, leaf species, and environmental conditions. Hydrobiologia 784: 65–79.

    Article  CAS  Google Scholar 

  • Rosemond, A. D., J. P. Benstead, P. M. Bumpers, V. Gulis, J. S. Kominoski, D. W. P. Manning, K. Suberkropp & J. B. Wallace, 2015. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347: 1142–1145.

    Article  CAS  Google Scholar 

  • Snyder, M. N., G. E. Small & C. M. Pringle, 2015. Diet-switching by omnivorous freshwater shrimp diminishes differences in nutrient recycling rates and body stoichiometry across a food quality gradient. Freshwater Biology 60: 526–536.

    Article  CAS  Google Scholar 

  • Villanueva, V. D., R. Albarino & C. Canhoto, 2012. Positive effect of shredders on microbial biomass and decomposition in stream microcosms. Freshwater Biology 57: 2504–2513.

    Article  CAS  Google Scholar 

  • Waldrop, M. P. & M. K. Firestone, 2004. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138: 275–284.

    Article  Google Scholar 

  • Wallenstein, M. D., M. L. Haddix, E. Ayres, H. Steltzer, K. A. Magrini-Bair & E. A. Paul, 2013. Litter chemistry changes more rapidly when decomposed at home but converges during decomposition-transformation. Soil Biology and Biochemistry 57: 311–319.

    Article  CAS  Google Scholar 

  • Williams, J. L., 2002. Effects of the tropical freshwater shrimp Caridina weberi (Atyidae) on leaf litter decomposition. Biotropica 34: 616–619.

    Article  Google Scholar 

  • Wotton, R. S. & B. Malmqvist, 2001. Feces in aquatic ecosystems. Bioscience 51: 537–544.

    Article  Google Scholar 

  • Wright, M. S. & A. P. Covich, 2005a. The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica 37: 403–408.

    Article  Google Scholar 

  • Wright, M. S. & A. P. Covich, 2005b. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference. Microbial Ecology 49: 536–546.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., J. S. Richardson & J. N. Negishi, 2004. Detritus processing, ecosystem engineering and benthic diversity: a test of predator-omnivore interference. Journal of Animal Ecology 73: 756–766.

    Article  Google Scholar 

  • Zhou, X. X., Y. B. Wang & W. F. Li, 2009. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture 287: 349–353.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (No. 2016YFD0600204), the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07204-004-003), the State Key Program of National Natural Science Foundation of China (No. 31530007), the Sanxin Forestry Project in Jiangsu Province (No. LYSX[2016]46), the specimen platform of China, and the teaching specimens sub-platform (2005DKA21403-JK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjun Tian.

Additional information

Guest editors: Shuqing An, Jennifer Ann Davis & Dong Xie / Coastal Wetlands: Services, Uses and Conservation

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wu, W., Tian, K. et al. Promotive performance of shrimp Neocaridina denticulata on Typha angustifolia leaf litter decomposition. Hydrobiologia 827, 75–87 (2019). https://doi.org/10.1007/s10750-018-3573-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3573-4

Keywords

Navigation