Skip to main content
Log in

Carotenoid-based skin coloration signals antioxidant defenses in the brown trout (Salmo trutta)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Carotenoid-based signals may function as indicators of individual quality because, being exclusively obtained from the diet, they indicate the ability of individuals to intake high-quality food. Moreover, carotenoids are involved in several important physiological functions, including antioxidant defense, so that carotenoid-based colorations have been suggested to reflect the antioxidant status of their bearers. The present correlative, cross-sectional study aimed at investigating if the skin carotenoid-based coloration is a signal of antioxidant defenses in the brown trout (Salmo trutta Linnaeus, 1758). We investigated the relationships between carotenoid-based coloration traits (including the number, density and redness of red spots, as well as the ventral yellowness), and both non-enzymatic (plasma and liver total antioxidant capacity) and enzymatic antioxidant defenses (activity of hepatic superoxide dismutase —SOD, catalase —CAT and glutathione peroxidase —GPx). We found significant positive covariations between antioxidant defenses and carotenoid-based skin coloration, in terms of ventral yellowness. Brown trout individuals displaying intense carotenoid-based coloration (i.e., ventral yellowness) had a high non-enzymatic antioxidant capacity both in plasma and in liver and, interestingly, an elevated activity of hepatic SOD and CAT. Our data suggest that carotenoid-based skin colorations may be considered a signal of individual quality in terms of antioxidant defenses in the brown trout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Alvarez, C., S. Bertrand, G. Devevey, J. Prost, B. Faivre & G. Sorci, 2004. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Letters 7: 363–368.

    Article  Google Scholar 

  • Aparicio, E., E. Garcia-Berthou, R. M. Araguas, P. Martinez & J. L. Garcia-Marin, 2005. Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. Journal of Fish Biology 67: 931–949.

    Article  Google Scholar 

  • Backström, T., E. Brännäs, J. Nilsson & C. Magnhagen, 2014. Behaviour, physiology and carotenoid pigmentation in Arctic charr Salvelinus alpinus. Journal of Fish Biology 84: 1–9.

    Article  PubMed  Google Scholar 

  • Bagnara, J. T., 1998. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In Nordland, J., R. Boissy, V. Hearing, R. King & J. Ortonne (eds), The Pigmentary System. Physiology and Pathophysiology. Oxford University Press, New York: 9–40.

    Google Scholar 

  • Balshine, S., 2012. Patterns of parental care in vertebrates. In Royle, N., P. Smiseth & M. Kölliker (eds), The Evolution of Parental Care. Oxford University Press, Oxford: 62–80.

    Chapter  Google Scholar 

  • Bertrand, S., B. Faivre & G. Sorci, 2006. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants? Journal of Experimental Biology 209: 4414–4419.

    Article  CAS  PubMed  Google Scholar 

  • Birnie-Gauvin, K., D. Costantini, S. J. Cooke & W. G. Willmore, 2017. A comparative and evolutionary approach to oxidative stress in fish: a review. Fish and Fisheries 18: 928–942.

    Article  Google Scholar 

  • Bjerkeng, B., T. Storebakken & S. Liaaen-Jensen, 1992. Pigmentation of rainbow-trout from start feeding to sexual-maturation. Aquaculture 108: 333–346.

    Article  CAS  Google Scholar 

  • Blanc, J. M., H. Poisson & R. Vibert, 1982. Variabilite genetique de la ponctuation noire sur la truitelle Fario (Salmo trutta L.). Annales De Genetique Et De Selection Animale 14: 225–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc, J. M., B. Chevassus & F. Krieg, 1994. Inheritance of the number of red spots on the skin of the brown trout. Aquatic Living Resources 7: 133–136.

    Article  Google Scholar 

  • Blomhoff, R., & H. K. Blomhoff, 2006. Overview of retinoid metabolism and function. Developmental Neurobiology 66(7): 606–630.

    Article  CAS  Google Scholar 

  • Blount, J. D., D. C. Houston & A. P. Møller, 2000. Why egg yolk is yellow. Trends in Ecology & Evolution 15: 47–49.

    Article  CAS  Google Scholar 

  • Boonstra, R., 2013. Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Functional Ecology 27(1): 11–23.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1–2): 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A. C., H. M. Leonard, K. J. McGraw & E. D. Clotfelter, 2014. Maternal effects of carotenoid supplementation in an ornamented cichlid fish (Amantitlania siquia). Functional Ecology 28: 612–620.

    Article  Google Scholar 

  • Bud, I., I. L. Dombi, & V. V. Vlădău, 2009. The geographic isolation impact on evolution of some morpho-physiological features in the Brown trout (Salmo trutta fario Linnaeus). AACL Bioflux 2: 31–50.

    Google Scholar 

  • Burton, G. W. & K. U. Ingold, 1984. β-carotene: an unusual type of lipid antioxidant. Science 224: 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Candolin, U. & L. Tukiainen, 2015. The sexual selection paradigm: have we overlooked other mechanisms in the evolution of male ornaments? Proceedings of the Royal Society of London. Series B, Biological Sciences 282: 1–9.

    Article  Google Scholar 

  • Catoni, C., A. Peters & H. M. Schaefer, 2008. Life history trade-offs are influenced by the diversity, availability and interactions of dietary antioxidants. Animal Behaviour 76: 1107–1119.

    Article  Google Scholar 

  • Costantini, D. & A. P. Møller, 2008. Carotenoids are minor antioxidants for birds. Functional Ecology 22: 367–370.

    Article  Google Scholar 

  • Craig, J. K., C. J. Foote & C. C. Wood, 2005. Countergradient variation in carotenoid use between sympatric morphs of sockeye salmon (Oncorhynchus nerka) exposes nonanadromous hybrids in the wild by their mismatched spawning colour. Biological Journal of the Linnean Society 84: 287–305.

    Article  Google Scholar 

  • Dale, J., C. J. Dey, K. Delhey, B. Kempenaers & M. Valcu, 2015. The effects of life history and sexual selection on male and female plumage colouration. Nature 527: 367–370.

    Article  CAS  PubMed  Google Scholar 

  • Djurdjevič, I., M. E. Kreft & S. Sušnik Bajec, 2015. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids. Journal of Anatomy 227: 583–595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endler, J. A., 1980. Natural-selection on color patterns in Poecilia reticulata. Evolution 34: 76–91.

    Article  PubMed  Google Scholar 

  • Erel, O., 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, R., 2000. The regulation of motile activity in fish chromatophores. Pigment Cell Research 13: 300–319.

    Article  CAS  PubMed  Google Scholar 

  • Garner, S. R., B. D. Neff & M. A. Bernards, 2010. Dietary carotenoid levels affect carotenoid and retinoid allocation in female Chinook salmon Oncorhynchus tshawytscha. Journal of Fish Biology 76: 1474–1490.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., 1996. Vitamin C: antioxidant or pro-oxidant in vivo? Free Radical Research 25: 439–454.

    Article  CAS  PubMed  Google Scholar 

  • Hartley, R. C. & M. W. Kennedy, 2004. Are carotenoids a red herring in sexual display? Trends in Ecology & Evolution 19: 353–354.

    Article  Google Scholar 

  • Hubbard, J. K., J. A. C. Uy, M. E. Hauber, H. E. Hoekstra & R. J. Safran, 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics 26: 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, A., C. Shimizu & M. Kono, 1984. Pigmentation of cultured red sea bream, Chrysophrys major, using astaxanthin from Antarctic krill, Euphausia superba, and a mysid, Neomysis sp. Aquaculture 38: 45–57.

    Article  CAS  Google Scholar 

  • Johnstone, R. A., 1997. The evolution of animal signals. In Krebs, J. R. & N. B. Davies (eds), Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford: 155–178.

    Google Scholar 

  • Kelsh, R. N., 2004. Genetics and evolution of pigment patterns in fish. Pigment Cell Research 17: 326–336.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.-Y. & A. Velando, 2016. Genetic conflict between sexual signaling and juvenile survival in the three-spined stickleback. BMC Evolutionary Biology 16: 1–7.

    Article  Google Scholar 

  • Kocabaş, M., M. Kayim, E. Can, M. Ateş & F. Kutluyer, 2011. Spotting pattern features in the brown trout (Salmo trutta macrostigma, T., 1954) population. Scientific Research and Essays 6: 5021–5024.

    Google Scholar 

  • Kolluru, G. R., G. F. Grether, S. H. South, E. Dunlop, A. Cardinali, L. Liu & A. Carapiet, 2006. The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biological Journal of the Linnean Society 89(2): 301–309.

    Article  Google Scholar 

  • Kop, A. & Y. Durmaz, 2008. The effect of synthetic and natural pigments on the colour of the cichlids (Cichlasoma severum sp., Heckel 1840). Aquaculture International 16: 117–122.

    Article  Google Scholar 

  • Krinsky, N. I., 1989. Antioxidant functions of carotenoids. Free Radical Biology Medicine 7: 617–635.

    Article  CAS  PubMed  Google Scholar 

  • Krinsky, N. I., 1993. Actions of carotenoids in biological systems. Annual Review of Nutrition 13(1): 561–587.

    Article  CAS  PubMed  Google Scholar 

  • Krinsky, N. I., & K. J. Yeum, 2003. Carotenoid–radical interactions. Biochemical and Biophysical Research Communications 305(3): 754–760.

    Article  CAS  PubMed  Google Scholar 

  • Leclercq, E., J. F. Taylor & H. Migaud, 2010. Morphological skin colour changes in teleosts. Fish and Fisheries 11: 159–193.

    Article  Google Scholar 

  • León, K., D. Mery, F. Pedreschi & J. León, 2006. Color measurement in L∗a∗b∗ units from RGB digital images. Food Research International 39: 1084–1091.

    Article  Google Scholar 

  • Li, M. H., E. H. Robinson, D. F. Oberle & P. V. Zimba, 2007. Effects of various dietary carotenoid pigments on fillet appearance and pigment absorption in channel catfish Ictalarus punctatus. Journal of the World Aquaculture Society 38: 557–563.

    Article  Google Scholar 

  • Lozano, G. A., 1994. Carotenoids, parasites, and sexual selection. Oikos 70: 309–311.

    Article  Google Scholar 

  • Lozano, G. A., 2001. Carotenoids, immunity, and sexual selection: comparing apples and oranges?. The American Naturalist 158(2): 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Lushchak, V. I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic toxicology 101(1): 13–30.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Álvarez, R. M., A. E. Morales & A. Sanz, 2005. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries 15: 75–88.

    Article  Google Scholar 

  • McGraw, K. J., 2005. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Animal Behaviour 69: 757–764.

    Article  Google Scholar 

  • Modesto, K. A. & C. B. Martinez, 2010. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78: 294–299.

    Article  CAS  PubMed  Google Scholar 

  • Møller, A. P., C. Biard, J. D. Blount, D. C. Houston, P. Ninni, N. Saino & P. F. Surai, 2000. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Poultry and Avian Biology Reviews 11: 137–160.

    Google Scholar 

  • Monaghan, P., N. B. Metcalfe & R. Torres, 2009. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters 12: 75–92.

    Article  PubMed  Google Scholar 

  • Mortensen, A. & L. H. Skibsted, 1996. Kinetics of parallel electron transfer from beta-carotene to phenoxyl radical and adduct formation between phenoxyl radical and beta-carotene. Free Radical Research 25: 515–523.

    Article  CAS  PubMed  Google Scholar 

  • Mozsár, A., G. Boros, P. Sály, L. Antal & S. A. Nagy, 2015. Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. Journal of Applied Ichthyology 31: 315–320.

    Article  Google Scholar 

  • Olson, V. A. & I. P. F. Owens, 1998. Costly sexual signals: are carotenoids rare, risky or required? Trends in Ecology & Evolution 13: 510–514.

    Article  CAS  Google Scholar 

  • Packer, L., 1992. Carotenoids. Part A, Chemistry, Separation, Quantitation, and Antioxidation. Academic Press, London, UK.

    Google Scholar 

  • Parolini, M., A. Binelli, D. Cogni & A. Provini, 2010. Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere 79: 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Parolini, M., C. D. Possenti, F. Karadas, G. Colombo, M. Romano, M. Caprioli, … & N. Saino, 2017. Yolk vitamin E positively affects prenatal growth but not oxidative status in yellow-legged gull embryos. Current Zoology: zox037.

  • Perez, C., M. Lores & A. Velando, 2008. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behavioral Ecology 19: 967–973.

    Article  Google Scholar 

  • Perez-Rodriguez, L., 2009. Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. Bioessays 31: 1116–1126.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rodriguez, L., F. Mougeot, C. Alonso-Alvarez, J. Blas, J. Vinuela & G. R. Bortolotti, 2008. Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). Journal of Experimental Biology 211: 2155–2161.

    Article  CAS  PubMed  Google Scholar 

  • Peters, A., 2007. Testosterone and carotenoids: an integrated view of trade-offs between immunity and sexual signalling. Bioessays 29(5): 427–430.

    Article  CAS  PubMed  Google Scholar 

  • Pike, T. W., J. D. Blount, J. Lindström & N. B. Metcalfe, 2007. Availability of noncarotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biology Letters 3: 353–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman, M. M., S. Khosravi, K. H. Chang & S. M. Lee, 2016. Effects of dietary inclusion of astaxanthin on growth, muscle pigmentation and antioxidant capacity of juvenile rainbow trout (Oncorhynchus mykiss). Preventive nutrition and food science 21(3): 281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, M. K., R. R. Rustum, E. A. Chambers, J. D. Rounds, D. W. Wilmore & D. O. Jacobs, 1997. Starvation enhances hepatic free radical release following endotoxemia. Journal of Surgical Research 69: 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Stegen, J. C., C. M. Gienger & L. Sun, 2004. The control of color change in the Pacific tree frog, Hyla regilla. Canadian Journal of Zoology 82: 889–896.

    Article  Google Scholar 

  • Stephensen, C. B., 2001. Vitamin A, infection, and immune function. Annual Review of Nutrition 21(1): 167–192

    Article  CAS  PubMed  Google Scholar 

  • Steven, D. M., 1947. Carotenoid pigmentation in trout. Nature 160: 540.

    Article  CAS  PubMed  Google Scholar 

  • Steven, D. M., 1948. Studies on animal carotenoids. 1. Carotenoids of the brown trout (Salmo trutta Linnaeus). Journal of Experimental Biology 25: 369–387.

    CAS  PubMed  Google Scholar 

  • Stevens, M., C. A. Parraga, I. C. Cuthill, J. C. Partridge & T. S. Troscianko, 2007. Using digital photography to study animal coloration. Biological Journal of the Linnean Society 90: 211–237.

    Article  Google Scholar 

  • Svensson, P. A. & B. B. M. Wong, 2011. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148: 131–189.

    Article  Google Scholar 

  • Vinkler, M. & T. Albrecht, 2010. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health. Naturwissenschaften 97(1): 19–28.

    Article  CAS  PubMed  Google Scholar 

  • von Schantz, T., S. Bensch, M. Grahn, D. Hasselquist, & H. Wittzell, 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proceedings of the Royal Society of London. Series B, Biological Sciences 266: 1–12.

  • Wang, Y., Y. Chien & C. Pan, 2006. Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus. Aquaculture 261: 641–648.

    Article  CAS  Google Scholar 

  • Wedekind, C., P. Meyer, M. Frischknecht, U. A. Niggli & H. Pfander, 1998. Different carotenoids and potential information content of red coloration of male three-spined stickleback. Journal of Chemical Ecology 24: 787–801.

    Article  CAS  Google Scholar 

  • Wilkins, L. G., L. M. Da Cunha, L. Menin, D. Ortiz, V. Vocat-Mottier, M. Hobil, et al. 2017. Maternal allocation of carotenoids increases tolerance to bacterial infection in brown trout. Oecologia 185(3): 351–363.

Download references

Acknowledgements

We are very grateful to the Gran Paradiso National Park for the opportunity to perform this study. We would like to thank all the employers of the park surveillance involved during the sampling operations. We would like to thank Dr. Margherita Corti and Dr. Stefano Podofillini for their pivotal help in image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Parolini.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parolini, M., Iacobuzio, R., Possenti, C.D. et al. Carotenoid-based skin coloration signals antioxidant defenses in the brown trout (Salmo trutta). Hydrobiologia 815, 267–280 (2018). https://doi.org/10.1007/s10750-018-3571-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3571-6

Keywords

Navigation