, Volume 815, Issue 1, pp 229–251 | Cite as

Multi-table approach to assess the biogeography of phytoplankton: ecological and management implications

  • Wafa Feki-Sahnoun
  • Asma Hamza
  • Béchir Béjaoui
  • Mabrouka Mahfoudi
  • Ahmed Rebai
  • Malika Bel Hassen
Primary Research Paper


This study aimed to determine whether temporal variation of Bacillariophyceae and Dinophyceae changed spatially, to examine which bio-geographical features determined the spatial structure of Bacillariophyceae/Dinophyceae assemblages, and to compare between-zones variations in the phytoplankton taxonomic composition. The study is based on dataset collected during the period 2004–2007 along the coastal zones of the Gulf of Gabès using the STATIS multi-table method. This method allowed a measure of similarity between 15 sampling zones, the visualization of the species assemblages showing similar spatial variations and the reproducibility of this pattern for each zones’ association. High spatial gradient was evident for most species, and three large regions were obtained. Thirteen different taxa assemblages were then detected performing a common pattern of phytoplankton composition. For each assemblage, the most representative region which encompasses groups of zones with similar properties was identified. The hydrodynamic processes and geomorphologic properties of the different areas as well as anthropogenic activities are incriminated to play a major role in shaping the structural patterns of phytoplankton along the coastal zones of the Gulf of Gabès. This study suggested considering the bio-geographical features in the assessment of phytoplankton spatial assemblage.


Coastal zones Bacillariophyceae and Dinophyceae Biogeography STATIS analysis 



This study was supported by the National funded project “Gabès Assessment, Modeling & Adaptation.”


  1. Abdennadher, M., A. Hamza, W. Fekih, I. Hannachi, A. Zouari-Belaaj, N. Bradai & L. Aleya, 2012. Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10-year study along the shallow southwestern Mediterranean coasts. Estuarine, Coastal and Shelf Science 106: 102–111.CrossRefGoogle Scholar
  2. Anneville, O., V. Ginot, J. C. Druart & N. Angeli, 2002. Long-term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach. Journal of Plankton Research 24: 993–1007.CrossRefGoogle Scholar
  3. APHA, 1992. American public health association standard methods for analysis of water and wastewater. APHA Publishers, Washington, DC.Google Scholar
  4. Ayadi, H., O. Abid, J. Elloumi, A. Bouain & S. N. Télesphore, 2004. Structure of the phytoplankton communities in two lagoons of different salinity in the Sfax saltern (Tunisia). Journal of Plankton Research 26: 669–679.CrossRefGoogle Scholar
  5. Baran, E., 1995. Dynamique Spatio-Temporelle des Peuplements de Poissons Estuariens en Guinée: Relations Avec le Milieu Abiotique. TDM 142, Editions ORTSOM, Paris.Google Scholar
  6. Béjaoui, B., S. Raïs & V. Koutitonsky, 2004. Modélisation de la dispersion du phosphogypse dans le Golfe de Gabès. Bulletin de l’Institut National et Technologie de la Mer de Salammbô 31: 103–109.Google Scholar
  7. Bel Hassen, M., Z. Drira, A. Hamza, H. Ayadi, F. Akrout & H. Issaoui, 2008. Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes. Estuarine, Coastal and Shelf Science 77: 645–656.CrossRefGoogle Scholar
  8. Bel Hassen, M., Z. Drira, A. Hamza, H. Ayadi, F. Akrout, S. Messaoudi, H. Issaoui, L. Aleya & A. Bouain, 2009a. Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: ecological implications. Journal of Marine Systems 75: 216–226.CrossRefGoogle Scholar
  9. Bel Hassen, M., A. Hamza, Z. Drira, A. Zouari, F. Akrout, S. Messaoudi, L. Aleya & H. Ayadi, 2009b. Phytoplankton-pigment signatures and their relationship to spring summer stratification in the Gulf of Gabes. Estuarine, Coastal and Shelf Science 83: 296–306.CrossRefGoogle Scholar
  10. Ben Amor, R., M. Brahim & M. Gueddari, 2003. Essai d’interprétation de la dynamique sédimentaire par l’analyse granulométrique et minéralogique au large du Golfe de Gabès. Bulletin de l’institut National et Technologie de la Mer de Salammbô 30: 143–151.Google Scholar
  11. Ben Aoun, Z., F. Farhat, L. Chouba & M. S. Hadj Ali, 2007. Investigation on possible chemical pollution of the Boughrara Lagoon, South of Tunisia, by chemical wastes. Bulletin de l’institut National et Technologie de la Mer de Salammbô 34: 119–127.Google Scholar
  12. Ben Brahim, M., A. Hamza, I. Hannachi, A. Rebai, O. Jarboui, A. Bouain & L. Aleya, 2010. Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia. Marine Environment Research 70: 411–421.CrossRefGoogle Scholar
  13. Ben Brahim, M., A. Hamza, S. Ben Ismail, L. Mabrouk, A. Bouain & L. Aleya, 2013. What factors drive seasonal variation of phytoplankton, protozoans and metazoans on leaves of Posidonia oceanica and in the water column along the coast of the Kerkennah Islands, Tunisia? Marine Pollution Bulletin 71: 286–298.CrossRefGoogle Scholar
  14. Ben Ltaief, T., Z. Drira, I. Hannachi, M. Bel Hassen, A. Hamza, M. Pagano & H. Ayadi, 2015. What are the factors leading to the success of small planktonic copepods in the Gulf of Gabes, Tunisia? Journal of the Marine Biological Association of the United Kingdom 95: 747–761.CrossRefGoogle Scholar
  15. Ben Mustapha, K., T. Komatsu, A. Hattour, C. Sammari, S. Zarrouk, A. Souissi & A. El Abed, 2002. Tunisian mega benthos from infra (Posidonia meadows) and circalittoral (coralligenous) sites. Bulletin de l’Institut National et Technologie de la Mer de Salammbô 29: 23–36.Google Scholar
  16. Ben Naila, I., A. Hamza, R. Gdoura, J. Diogene & P. Iglesia, 2012. Prevalence and persistence of gymnodimines in clams from the Gulf of Gabes (Tunisia) studied by mouse bioassay and LC–MS/MS. Harmful Algae 18: 56–64.CrossRefGoogle Scholar
  17. Ben Salem, Z., Z. Drira & H. Ayadi, 2015. What factors drive the variations of phytoplankton, ciliate and mesozooplankton communities in the polluted southern coast of Sfax, Tunisia? Environmental Science and Pollution Research 22: 11764–11780.CrossRefPubMedGoogle Scholar
  18. Bernard, F. & R. Taleb, 1970. Diatomées et cocolithophoridés indicateurs d’une provenance atlantique en Méditerranée. Rapport de la Commission Internationale de l’Exploration Scientifique de la Mer Méditerranée 21: 35–38.Google Scholar
  19. Boyer, J. N., J. W. Fourqurean & R. D. Jones, 1997. Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: zones of similar influence. Estuaries 20: 743–758.CrossRefGoogle Scholar
  20. Bravo, I., R. I. Figueroa, E. Garcés, S. Fraga & A. Massanet, 2010. The intricacies of dinoflagellate pellicle cysts: the example of Alexandrium minutum cysts from a bloom recurrent area (Bay of Baiona, NW Spain). Deep Sea Research II 57: 166–174.CrossRefGoogle Scholar
  21. Bray, R. J. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.CrossRefGoogle Scholar
  22. Brown, J., J. Gillooly, A. Allen, V. Savage & G. West, 2004. Toward a metabolic theory of ecology. Ecology 8: 1771–1789.CrossRefGoogle Scholar
  23. Cabecinha, E., P. J. Van den Brink, J. A. Cabral, R. Cortes, M. Lourenço & M. Â. Pardal, 2009. Ecological relationships between phytoplankton communities and different spatial scales in European reservoirs: implications at catchment level monitoring programmes. Hydrobiologia 628: 27–45.CrossRefGoogle Scholar
  24. Carstensen, J., K. Dahl, P. Henriksen, M. Hjorth, A. Josefson & D. Krause-Jensen, 2011. Coastal MONITORING programs. reef. Chapter 8 in Volume 07. In: Functioning of Ecosystems at the Land–Ocean Interface in the Treatise on Estuarine and Coastal Science. Elsevier, Amsterdam.Google Scholar
  25. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd, Plymouth Marine Laboratory, Plymouth.Google Scholar
  26. Cloern, J. E., T. S. Schraga, C. B. Lopez, N. Knowles, R. G. Labiosa & R. Dugdale, 2005. Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay. Geophysical Research Letters 32: L14608.CrossRefGoogle Scholar
  27. D’Ortenzio, F. & M. Ribera d’Alcalà, 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6: 139–148.CrossRefGoogle Scholar
  28. Daly-Yahia Kéfi, O., S. Souissi, F. Gómez & M. N. Daly-Yahia, 2005. Spatio-temporal distribution of the dominant Diatom and Dinoflagellate species in the Bay of Tunis (SW Mediterranean Sea). Mediterranean Marine Science 6: 17–34.CrossRefGoogle Scholar
  29. David, V., M. Ryckaert, M. Karpytchev, C. Bacher, V. Arnaudeau, N. Vidal, D. Maurer & N. Niquil, 2012. Spatial and long-term changes in the functional and structural phytoplankton communities along the French Atlantic coast. Estuarine, Coastal and Shelf Science 108: 37–51.CrossRefGoogle Scholar
  30. Dhib, A., V. Frossard, S. Turki & L. Aleya, 2013. Dynamics of harmful dinoflagellates driven by temperature and salinity in a northeastern Mediterranean lagoon. Environmental Monitoring and Assessment 185: 3369–3382.CrossRefPubMedGoogle Scholar
  31. Drira, Z., M. Bel Hassen, A. Hamza, H. Ayadi, A. Rebai, A. Bouaïn & L. Alyea, 2009. Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabes. Journal of the Marine Biological Association of the United Kingdom 89: 1559–1569.CrossRefGoogle Scholar
  32. Drira, Z., A. Hamza, M. Belhassen, H. Ayadi, A. Bouaïn & L. Aleya, 2008. Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Scientia Marina 72: 59–71.CrossRefGoogle Scholar
  33. Drira, Z., S. Kmiha-Megdiche, H. Sahnoun, A. Hammami, N. Allouche, M. Tedetti & H. Ayadi, 2016. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during Spring (Tunisia, Southern Mediterranean Sea). Marine Pollution Bulletin 104: 355–363.CrossRefPubMedGoogle Scholar
  34. Drira, Z., S. Kmiha-Megdiche, H. Sahnoun, M. Tedetti, M. Pagano & H. Ayadi, 2017. Copepod assemblages as a bioindicator of environmental quality in three coastal areas under contrasted anthropogenic inputs (Gulf of Gabes, Tunisia). Journal of the Marine Biological Association of the United Kingdom. Scholar
  35. Escoufier, Y., 1973. Le traitement des variables vectorielles. Biometrics 29: 751–760.CrossRefGoogle Scholar
  36. Estrada, M., 1985. Deep phytoplankton and chlorophyll maxima in the Western Mediterranean. In Moraitou-Aposto-Poulou, M. & V. Kiortis (eds), Marine Mediterranean Ecosystems. Plenum Press, New York: 247–277.CrossRefGoogle Scholar
  37. Estrada, M., R. A. Varela, J. Salat, A. Cruzado & E. Arias, 1999. Spatiotemporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean). Journal of Plankton Research 21: 1–20.CrossRefGoogle Scholar
  38. Feki, M., M. Ben Brahim, W. Feki-Sahnoun, M. Mahfoudi, C. Sammari & A. Hamza, 2016. Seasonal and daily fluctuation of dinoflagellates during spring tide periods in Kerkennah islands (southern coast of Tunisia). Life and Environment 66: 1–12.Google Scholar
  39. Feki, W., A. Hamza, M. Bel Hassen & A. Rebai, 2008. Les efflorescences phytoplanctoniques dans le golfe de Gabès (Tunisie) au cours de dix ans de surveillance (1995–2005). Bulletin de l’Institut National et Technologie de la Mer de Salammbô 35: 105–116.Google Scholar
  40. Feki, W., A. Hamza, V. Frossard, M. Abdennadher, I. Hannachi, M. Jacquot, M. Bel Hassen & L. Aleya, 2013. What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabes, Tunisia, southwestern Mediterranean Sea. Harmful Algae 23: 8–18.CrossRefGoogle Scholar
  41. Feki-Sahnoun, W., A. Hamza, M. Mahfoudi, A. Rebai & M. Bel Hassen, 2014. Long-term microphytoplankton variability patterns using multivariate analyses ecological and management implication. Environmental Science and Pollution Research 21: 11481–11499.CrossRefPubMedGoogle Scholar
  42. Feki-Sahnoun, W., A. Hamza, H. Njah, N. Barraj, M. Mahfoudi, A. Rebai & M. Bel Hassen, 2017. A Bayesian network approach to determine environmental factors controlling Karenia selliformis occurrences and blooms in the Gulf of Gabès, Tunisia. Harmful Algae 63: 119–132.CrossRefPubMedGoogle Scholar
  43. Feki-Sahnoun, W., H. Njah, A. Hamza, N. Barraj, M. Mahfoudi, A. Rebai & M. Bel Hassen, 2018. Using general linear model, Bayesian networks and Naive Bayes classifier for prediction of Karenia selliformis occurrences and blooms. Ecological Informatics 43: 12–23.CrossRefGoogle Scholar
  44. Figueiras, F. G., G. C. Pitcher & M. Estrada, 2006. Harmful algal bloom dynamics in relation to physical procesess. In Granéli, E. & J. T. Turner (eds), Ecology of Harmful Algae. Ecological Studies 189. Springer, Berlin: 127–138.CrossRefGoogle Scholar
  45. France, J. & P. Mozetič, 2006. Ecological characterization of toxic phytoplankton species (Dinophysis spp. Dinophyceae) in Slovenian mariculture areas (Gulf of Trieste. Adriatic Sea) and the implications for monitoring. Marine Pollution Bulletin 52: 1504–1516.CrossRefPubMedGoogle Scholar
  46. Gailhard, I., Ph Gros, J. P. Durbec, B. Beliaeff, C. Belin, E. Nézan & P. Lassus, 2002. Variability patterns of microphytoplankton communities along the French Coasts. Marine Ecology Progress Series 242: 39–50.CrossRefGoogle Scholar
  47. Gailhard, I., J. P. Durbec, B. Beliaeff & R. Sabatier, 2003. Ecologie du phytoplancton sur les côtes françaises: comparaison inter-sites. Comptes Rendus Biologies 326: 853–863.CrossRefPubMedGoogle Scholar
  48. Ghinaglia, L. T., J. A. Herrera-Silveira & F. A. Comín, 2004. Structural variations of phytoplankton in the coastal seas of Yucatan, Mexico. Hydrobiologia 519: 85–102.CrossRefGoogle Scholar
  49. Gligora, M., A. Plenković-Moraj, K. Kralj, I. Grigorszky & D. Peroš-Pucar, 2007. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). Hydrobiologia 584: 337–346.CrossRefGoogle Scholar
  50. Goodman, D., R. W. Eppley & F. M. H. Reid, 1984. Summer phytoplankton assemblages and their environmental correlates in the Southern California Bight. Journal of Marine Research 42: 1019–1049.CrossRefGoogle Scholar
  51. Hamza-Chaffai, A., C. Amiard-Triquet & A. El Abed, 1997. Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Archives of Environmental Contamination and Toxicology 33: 53–62.CrossRefPubMedGoogle Scholar
  52. Hamza-Chaffai, A., J. Pellerin & J. C. Amiard, 2003. Health assessment of a marine bivalve Ruditapes decussatus from the Gulf of Gabès (Tunisia). Environment International 28: 609–617.CrossRefPubMedGoogle Scholar
  53. Hattab, T., F. Ben Rais Lasram, C. Albouy, M. S. Romdhane, O. Jarboui, G. Halouani, P. Cury & F. Le Loc’h, 2013. An ecosystem model of an exploited southern Mediterranean shelf region (Gulf of Gabes, Tunisia) and a comparison with other Mediterranean ecosystem model properties. Journal of Marine Systems 128: 159–174.CrossRefGoogle Scholar
  54. Hu, R., X. Duan, L. Peng, B. Han & L. Naselli-Flores, 2017. Phytoplankton assemblages in a complex system of interconnected reservoirs: the role of water transport in dispersal. Hydrobiologia 800: 17–30.CrossRefGoogle Scholar
  55. Incagnone, G., F. Marrone, L. Robba, R. Barone & L. Naselli-Flores, 2015. How do freshwater organisms cross the ‘‘dry ocean’’? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123.CrossRefGoogle Scholar
  56. Izaguirre, I., M. L. Sánchez, M. R. Schiaffino, I. O’Farrell, P. Huber, N. Ferrer, J. Zunino, L. Lagomarsino & M. Mancini, 2015. Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiologia 752: 47–64.CrossRefGoogle Scholar
  57. Jarry, V., M. Flafa, G. F. Frisonl, G. Jacques, J. Neveux & M. Panouse, 1999. The spatial distribution of phytoplankton in a Mediterranean lagoon (Etang de Thau). Oceanologica Acta 13: 503–512.Google Scholar
  58. Jeong, H. J., Y. D. Yoo, J. S. Kim, K. A. Seong, N. S. Kang & T. H. Kim, 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45: 65–91.CrossRefGoogle Scholar
  59. Katlane, R., B. Nechad, K. Ruddick & F. Zargouni, 2011. Optical remote sensing of turbidity and total suspended matter in the Gulf of Gabes. Arabian Journal of Geosciences 6: 1527–1535.CrossRefGoogle Scholar
  60. Kchaou, N., J. Elloumi, Z. Drira, A. Hamza, H. Ayadi, A. Bouain & L. Aleya, 2009. Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuarine, Coastal and Shelf Science 83: 414–424.CrossRefGoogle Scholar
  61. Kharroubi, A., M. Gzam & Y. Jedoui, 2012. Anthropogenic and natural effects on the water and sediments qualities of costal lagoons: case of the Boughrara Lagoon (Southeast Tunisia). Environmental Earth Sciences 67: 1061–1067.CrossRefGoogle Scholar
  62. Kim, H. G., 2010. An Overview on the occurrences of harmful algal blooms (HABs) and mitigation strategies in Korean coastal waters. In Ishimatsu, A. & H. J. Lie (eds), Coastal Environmental and Ecosystem Issues of the East China Sea. TERRAPUB and Nagasaki University, Pub: 121–131.Google Scholar
  63. Klais, R., T. Tamminen, A. Kremp, K. Spilling & K. Olli, 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous baltic sea spring bloom. PLoS ONE 6: e21567.CrossRefPubMedCentralPubMedGoogle Scholar
  64. Kotta, J., M. Simm, I. Kotta, I. Kanošina, K. Kallaste & T. Raid, 2004. Factors controlling long-term changes of the eutrophicated ecosystem of Pärnu Bay, Gulf of Riga. Hydrobiologia 514: 259–268.CrossRefGoogle Scholar
  65. Krienitz, L., P. Kasprzak & R. Koschel, 1996. Long term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District, Germany). Hydrobiologia 330: 89–110.CrossRefGoogle Scholar
  66. Lance, G. N. & W. T. Williams, 1967. A general theory of classificatory sorting strategies: I. Hierarchical Systems. Computer Journal 9: 373–380.CrossRefGoogle Scholar
  67. Lavit, C., Y. Escoufier, R. Sabatier & P. Traissac, 1994. The ACT (STATIS method). Computational Statistics & Data Analysis 18: 97–119.CrossRefGoogle Scholar
  68. Li, A., D. K. Stoecker & J. E. Adolf, 1999. Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquatic Microbial Ecology 19: 163–176.CrossRefGoogle Scholar
  69. Li, Y., D. J. Li, J. L. Tang, Y. M. Wang, Z. G. Liu & S. Q. He, 2010. Long-term changes in the Changjiang Estuary plankton community related to anthropogenic eutrophication. Aquatic Ecosystem Health & Management 13: 66–72.CrossRefGoogle Scholar
  70. Louati, A., B. Elleuch, M. Kallel, A. Saliot, J. Dagaut & J. Oudot, 2001. Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Marine Pollution Bulletin 42: 445–452.CrossRefPubMedGoogle Scholar
  71. Loukil-Baklouti, A., W. Feki-Sahnoun, A. Hamza, M. Abdennadher, M. Mahfoudhi, A. Bouain & O. Jarboui, 2017. Controlling factors of harmful microalgae distribution in water column, biofilm and sediment in shellfish production area (South of Sfax, Gulf of Gabes) from southern Tunisia. Continental Shelf Research 152: 61–70.CrossRefGoogle Scholar
  72. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.Google Scholar
  73. Meier, S., M. Luoto & J. Soininen, 2015. The effects of local, buffer zone and geographical variables on lake plankton metacommunities. Hydrobiologia 743: 175–188.CrossRefGoogle Scholar
  74. Mercado, J. M., T. Ramírez, M. Sebastián & M. Vargas, 2005. Seasonal and inter-annual variability of the phytoplankton communities in an upwelling area of the Alborán Sea (SW Mediterranean Sea). Scientia Marina 69: 451–465.CrossRefGoogle Scholar
  75. Moncer, M., A. Hamza, W. Feki-Sahnoun, L. Mabrouk & M. Bel Hassen, 2017. Variability patterns of epibenthic microalgae in eastern Tunisian coasts. Scientia Marina 81: 4.CrossRefGoogle Scholar
  76. Moncheva, S., O. Gotsis-Skretas, K. Pagou & A. Krastev, 2001. Phytoplankton blooms in black sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine, Coastal and Shelf Science 53: 281–295.CrossRefGoogle Scholar
  77. Najar, B., B. M. Sadok & H. A. Mohammed, 2010. Evolution des profils des débarquements de poissons dans la région de Gabès, Tunisie. Rapport Commission International Mer Méditerranée 39: 601.Google Scholar
  78. Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplankton walk down? A synthesis on phytoplankton biogeography and spatial patterns. Hydrobiologia 764: 303–313.CrossRefGoogle Scholar
  79. Naselli-Flores, L., R. Termine & R. Barone, 2016. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity? Hydrobiologia 764: 103–113.CrossRefGoogle Scholar
  80. Nehring, S., 1994. Spatial distribution of dinoflagellate resting cysts in recent sediments of Kiel Bight, Germany (Baltic Sea). Ophelia 39: 137–158.CrossRefGoogle Scholar
  81. Othmani, A., B. Béjaoui, C. Chevalier, D. Elhmaidi, J. L. Devenon & L. Aleya, 2017. High-resolution numerical modelling of the barotropic tides in the Gulf of Gabes, eastern Mediterranean Sea (Tunisia). Journal of African Earth Sciences 129: 224–232.CrossRefGoogle Scholar
  82. Padial, A. A., F. Ceschin, S. A. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tha, L. Rodrigues, L. C. Rodrigues, S. Train & L. F. Velho, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PloS ONE 9: e111227.CrossRefPubMedCentralPubMedGoogle Scholar
  83. Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.CrossRefGoogle Scholar
  84. Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography 33: 823–847.Google Scholar
  85. Rabaoui, L., R. Balti, R. Zrelli & S. Tlig-Zouari, 2013. Assessment of heavy metal pollution in the gulf of Gabes (Tunisia) using four mollusc species. Mediterranean Marine Science 15: 45–58.CrossRefGoogle Scholar
  86. Ramdani, M., N. Elkhiati, R. J. Flower, J. R. Thompson, M. M. Kraiem, F. Ayache & M. H. Ahmed, 2004. Environmental influences on the qualitative and quantitative composition of phytoplankton and zooplankton in North African coastal lagoons. Hydrobiologia 622: 113–131.CrossRefGoogle Scholar
  87. Rekik, A., Z. Drira, W. Guermazi, J. Elloumi, S. Maalej, L. Aleya & H. Ayadi, 2012. Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Marine Pollution Bulletin 64: 336–346.CrossRefPubMedGoogle Scholar
  88. Rekik, A., S. Maalej, H. Ayadi & L. Aleya, 2013. Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast. Environmental Science Pollution Research International 20: 3718–3734.CrossRefPubMedGoogle Scholar
  89. Rekik, A., M. Denis, S. Maalej & H. Ayadi, 2015. Spatial and seasonal variability of pico-, nano- and microphytoplankton at the bottom seawater in the north coast of Sfax. Eastern Mediterranean Sea. Environmental Science and Pollution Research 22: 15961–15975.CrossRefPubMedGoogle Scholar
  90. Reynolds, C. S., 1995. Successional change in the planktonic vegetation: species, structures, scales. In Joint, I. (ed.), The Molecular Ecology of Aquatic Microbes. Springer, Berlin: 115–132.CrossRefGoogle Scholar
  91. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  92. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton (review). Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  93. Ricard, M., 1987. Atlas du Phytoplancton Marin. Diatomophycées, Vol. II. Editions du CNRS, Paris.Google Scholar
  94. Rodrigues, L. C., B. M. Pivato, L. C. G. Vieira, V. M. Bovo-Scomparin, J. C. Bortolini, A. Pineda & S. Train, 2017. Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805: 147–161.CrossRefGoogle Scholar
  95. Rolland, A., F. Bertrand, M. Maumy & S. Jacquet, 2009. Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Research 43: 3155–3168.CrossRefPubMedGoogle Scholar
  96. Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502: 13–36.CrossRefGoogle Scholar
  97. Salmaso, N. & L. Cerasino, 2012. Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia 698: 17–28.CrossRefGoogle Scholar
  98. Salmaso, N. & J. Padisak, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  99. Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.CrossRefGoogle Scholar
  100. Sammari, C., V. Koutitonsky & M. Moussa, 2006. Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Continental Shelf Research 26: 338–350.CrossRefGoogle Scholar
  101. Santos, J. B., L. H. Silva, C. W. Branco & V. L. Huszar, 2016. The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764: 171–186.CrossRefGoogle Scholar
  102. Sitoki, L., R. Kurmayer & E. Rott, 2012. Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia 691: 109–122.CrossRefPubMedCentralPubMedGoogle Scholar
  103. Smaoui-Damak, W., T. Rebai, B. Berthet & A. Hamza-Chaffai, 2006. Does cadmium pollution affect reproduction in the clam (Ruditapes decussatus)? A one-year case study. Comparative Biochemistry and Physiology Part C 143: 252–261.PubMedGoogle Scholar
  104. Smayda, T. J., 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42: 1137–1153.CrossRefGoogle Scholar
  105. Smayda, T. J., 1980. Phytoplankton species succession. In Moms, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford: 493–570.Google Scholar
  106. Smayda, T. J. & C. S. Reynolds, 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23: 447–461.CrossRefGoogle Scholar
  107. Snit’ko, L. V. & V. P. Snit’ko, 2014. Phytoplankton as an indicator in assessing long term variations in water quality of lakes Bolshoye Miassovo and Turgoyak, the South Urals. Water Resources 41: 210–217.CrossRefGoogle Scholar
  108. Soininen, J., M. Kokocinski, S. Estlander, J. Kotanen & J. Heino, 2007. Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14: 146–154.CrossRefGoogle Scholar
  109. Soininen, J., J. J. Korhonen, J. Karhu & A. Vetterli, 2011. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography 56: 508–520.CrossRefGoogle Scholar
  110. Souissi, S., O. D. Yahia-Kéfi & M. N. D. Yahia, 2000. Spatial characterization of nutrient dynamics in the Bay of Tunis (south-western Mediterranean) using multivariate analyses: consequences for phyto and zooplankton distribution. Journal of Plankton Research 22: 2039–2059.CrossRefGoogle Scholar
  111. Stanca, E. & S. Parsons, 2017. Phytoplankton diversity along spatial and temporal gradients in the Florida Keys. Journal of Plankton Research 39: 1–19.CrossRefGoogle Scholar
  112. Stoecker, D., U. Tillmann & E. Granéli, 2006. Phagotrophy in harmful algae. In Granéli, E. & J. T. Turner (eds), Ecology of Harmful Algae. Ecological Studies 189. Springer, Berlin: 177–187.CrossRefGoogle Scholar
  113. Telesh, V., A. F. Alimov, S. M. Golubkov, V. N. Nikulina & V. E. Panov, 1999. Response of aquatic communities to anthropogenic stress: a comparative study of Neva Bay and the eastern Gulf of Finland. Hydrobiologia 393: 95–105.CrossRefGoogle Scholar
  114. Thioulouse, J., D. Chessel, S. Dolédec & J. Olivier, 1997. Ade-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.CrossRefGoogle Scholar
  115. Thomas, C. R., 1996. Identifying Marine Diatoms and Dinoflagellates. Academic Press, London.Google Scholar
  116. Tian, C., X. Lu, H. Pei, W. Hu & J. Xie, 2013. Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China. Environmental Monitoring and Assessment 185: 2627–2645.CrossRefPubMedGoogle Scholar
  117. Trigueros, J. M. & E. Orive, 2001. Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages. Hydrobiologia 444: 119–133.CrossRefGoogle Scholar
  118. Turki, S., 2005. Distribution of toxic dinoflagellates along the leaves of seagrass Posidonia oceanica and Cymodocea nodosa from the Gulf of Tunis. Cahier de Biologie Marine 46: 29–34.Google Scholar
  119. Udovič, M. G., A. Cvetkoska, P. Žutinić, S. Bosak, I. Stanković, I. Špoljarić, G. Mršić, K. K. Borojević, A. Ćukurin & A. Plenković-Moraj, 2017. Defining centric diatoms of most relevant phytoplankton functional groups in deep karst lake. Hydrobiologia 788: 169–191.CrossRefGoogle Scholar
  120. UNEP/MAP (United Nations Environment Programme) (Mediterranean Action Plan). 2003. Assessment of transboundary pollution issues in the Mediterranean Sea. UNEP (DEC)/MED WG.228/Inf.7. Athens.Google Scholar
  121. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  122. Varela, M., 1992. Upwelling and phytoplankton ecology in Galician (NW Spain) rias and shelf waters. Boletin 8: 57–74.Google Scholar
  123. Xie, D. F., Z. B. Wang, S. Gao & H. J. De Vriend, 2009. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Continental Shelf Research 29: 1757–1767.CrossRefGoogle Scholar
  124. Xie, D. F., C. H. Pan, Y. Cao & B. H. Zhang, 2013. Decadal variations in the erosion/deposition pattern of the Hangzhou Bay and their mechanism in recent 50 a. Acta Oceanologica Sinica 35: 121–178.Google Scholar
  125. Zaghden, H., M. Kallel, A. Louati, B. Elleuch, J. Oudot & A. Saliot, 2005. Hydrocarbons in surface sediments from the Sfax coastal zone (Tunisia), Mediterranean Sea. Marine Pollution Bulletin 50: 1287–1294.CrossRefPubMedGoogle Scholar
  126. Zairi, M. & M. Rouis, 1999. Impacts environnementaux du stockage du phosphogypse à Sfax (Tunisie). Bulletin-laboratoires des ponts et chaussées, pp. 29–40.Google Scholar
  127. Zingone, A., L. Dubroca, D. Iudicone, F. Margiotta, F. Corato, M. Ribera d’Alcalà, V. Saggiomo & D. Sarno, 2010. Coastal phytoplankton do not rest in winter. Estuaries and Coasts 33: 342–361.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wafa Feki-Sahnoun
    • 1
  • Asma Hamza
    • 1
  • Béchir Béjaoui
    • 2
  • Mabrouka Mahfoudi
    • 1
  • Ahmed Rebai
    • 3
  • Malika Bel Hassen
    • 2
  1. 1.Laboratoire Milieu Marin, Institut National des Sciences et Technologies de la Mer (INSTM)Centre de SfaxSfaxTunisie
  2. 2.Laboratoire Milieu Marin, Institut National des Sciences et Technologies de la Mer (INSTM)SalammbôTunisie
  3. 3.Centre de Biotechnologie de SfaxSfaxTunisie

Personalised recommendations