Skip to main content
Log in

Is the Orton’s rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although the Orton’s rule was already questioned for several invertebrate lineages, it remains unchallenged in sponges. To assess its validity in Porifera, we investigated the reproductive cycle of five species of Demospongiae on a tropical rocky shore, aiming to determine the effect of some environmental variables (EVs) on the periodicity, density of reproductive elements, and population engagement in reproduction. All species reproduced continuously, with low percentage of reproductive individuals and low fecundity. Each species presented a set of models containing different EVs to explain their reproductive traits. In general, the relationship of the EVs on the percentage of reproductive individuals and density of gametes and embryos was delayed in 1–3 months. Temperature was amongst the factors that best explained the species reproduction, with a delay of 1 month being the factor most consistently found amongst the models. In addition, we carried out a meta-analysis and discovered that in temperate regions most species reproduced periodically, whilst in the tropics, a small percentage reproduced continuously. Our findings suggest that Orton’s Rule is partially sustained, as species reproduced continuously, but challenge the lack of the influence of the temperature and other EVs in the reproduction of tropical marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, D. R., 2008. Model based inference in the life sciences: a primer on evidence. Springer, New York.

    Book  Google Scholar 

  • Asa, S., T. Yeemin, N. Chaitanawisuti & A. Kritsanapuntu, 2000. Sexual reproduction of a marine sponge, Petrosia sp. from coral communities in the Gulf of Thailand. Proceeding of the 9th International Coral Reef Symposium: 421–424

  • Ayling, A. L., 1980. Patterns of sexuality, asexual reproduction and recruitment in some subtidal marine Demospongiae. Biological Bulletin 158: 271–282.

    Article  Google Scholar 

  • Aviz, D., A. J. A. Pinto, M. A. P. Ferreira, R. M. Rocha & J. S. Rosa Filho, 2016. Reproductive biology of Sabellaria wilsoni (Sabellariidae: Polychaeta), an important ecosystem engineer on the Amazon coast. Journal of the Marine Biological Association of the United Kingdom. 1–12

  • Baldacconi, R., C. Nonnis-Marzano, E. Gaino & G. Corriero, 2007. Sexual reproduction, larval development and release in Spongia officinalis L. (Porifera, Demospongiae) from the Apulian coast. Marine Biology 152: 969–979.

    Article  Google Scholar 

  • Bauer, R. T., 1989. Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. Journal of Experimental Marine Biology and Ecology 127: 175–187.

    Article  Google Scholar 

  • Bauer, R. T., 1992. Testing generalizations about latitudinal variation in reproduction and recruitment patterns with sicyoniid and caridean shrimp species. Invertebrate Reproduction and Development 22: 193–202.

    Article  Google Scholar 

  • Bautista-Guerrero, E., J. L. Carballo & M. Maldonado, 2010. Reproductive cycle of the coral-excavating sponge Thoosa mismalolli (Clionaidae) from Mexican Pacific coral reefs. Invertebrate Biology 129: 285–296.

    Article  Google Scholar 

  • Becerro, M. A., 2008. Quantitative trends in sponge ecology research. Marine Ecology 29: 167–177.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York.

    Google Scholar 

  • Ceuta, L. O. & G. Boehs, 2012. Reproductive cycle of Tagelus plebeius (Mollusca: Bivalvia) in the estuary of the Cachoeira River, Ilhéus, Bahia, Brazil. Brazilian Journal of Biology 72: 569–576.

    Article  CAS  Google Scholar 

  • Chia, F.-S. & C. W. Walker, 1991. Echinodermata: Asteroidea. In Giese A.& V. Pearse (eds) Reproduction of Marine Invertebrates Vol. VI. Boxwood Press, Pacific Groove: 301–353

  • Corriero, G., M. Sarà & P. Vaccaro, 1996. Sexual and asexual reproduction in two species of Tethya (Porifera: Demospongiae) from a Mediterranean coastal lagoon. Marine Biology 126: 175–181.

    Article  Google Scholar 

  • Darling, E. S., N. A. J. Graham, F. A. Januchowski-Hartley, K. L. Nash, M. S. Pratchett & S. K. Wilson, 2017. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36: 561–575.

    Article  Google Scholar 

  • de Goeij, J. M., D. van Oevelen, M. J. A. Vermeij, R. Osinga, J. J. Middelburg, A. F. P. M. de Goeij & W. Admiraal, 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342: 108–110.

    Article  PubMed  Google Scholar 

  • Di Camillo, C. G., M. Coppari, I. Bartolucci, M. Bo, F. Betti, M. Bertolino, B. Calcinai, C. Cerrano, G. De Grandis & G. Bavestrello, 2012. Temporal variations in growth and reproduction of Tedania anhelans and Chondrosia reniformis in the North Adriatic Sea. Hydrobiologia 687: 299–313.

    Article  Google Scholar 

  • Elvin, D. W., 1976. Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Biol Bull 151: 108–125.

    Article  Google Scholar 

  • Ereskovsky, A. V., 2000. Reproduction cycles and strategies of the cold-water sponges Halisarca dujardini (Demospongiae, Halisarcida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea. Biological Bulletin 198: 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Ereskovsky, A. V., 2010. The comparative embryology of sponges. Springer, Dordrecht, Heidelberg.

    Book  Google Scholar 

  • Ereskovsky, A., M. Dubois, J. Ivanišević, E. Gazave, P. Lapebie, D. Tokina & T. Pérez, 2013. Pluri-annual study of the reproduction of two Mediterranean Oscarella species (Porifera, Homoscleromorpha): cycle, sex-ratio, reproductive effort and phenology. Marine Biology 160: 423–438.

    Article  Google Scholar 

  • Ettinger-Epstein, P., S. W. Whalan, C. N. Battershill & R. de Nys, 2007. Temperature cues gametogenesis and larval release in a tropical sponge. Marine Biology 153: 171–178.

    Article  Google Scholar 

  • Fromont, J., 1994. Reproductive development and timing of tropical sponges (Order Haplosclerida) from the Great-Barrier-Reef, Australia. Coral Reefs 13: 127–133.

    Article  Google Scholar 

  • Fromont, J. & P. R. Bergquist, 1994. Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef. Coral Reefs 13: 119–126.

    Article  Google Scholar 

  • Genta-Jouve, G. & O. P. Thomas, 2012. Sponge Chemical Diversity: From Biosynthetic Pathways to Ecological Roles. In Becerro, M. A., M. J. Uriz, M. Maldonado & X. Turon (eds), Advances in Marine Biology. Academic Press, Amsterdam: 183–230.

    Google Scholar 

  • Giese, A. C., 1959. Comparative physiology: annual reproductive cycles of marine invertebrates. Annual Review of Physiology 21: 547–576.

    Article  CAS  PubMed  Google Scholar 

  • Gregg, W. W. & N. W. Casey, 2004. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sensing of Environment 93: 463–479.

    Article  Google Scholar 

  • Hajdu, E., S. Peixinho & J. C. C. Fernandez, 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Museu Nacional, Rio de Janeiro.

    Google Scholar 

  • Hoppe, W. F., 1988. Reproductive patterns in three species of large coral reef sponges. Coral Reefs 7: 45–50.

    Article  Google Scholar 

  • Jaeckle, W. B., 1995. Transport and metabolism of alanine and palmitic acid by field-collected larvae of Tedania ignis (Porifera, Demospongiae): estimated consequences of limited label translocation. Biological Bulletin 189: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Kaye, H. R. & H. M. Reiswig, 1991. Sexual reproduction in four Caribbean commercial sponges. I. Reproductive cycles and spermatogenesis. Invertebrate Reproduction and Development 19: 1–11.

    Article  Google Scholar 

  • Lanna, E. & M. Klautau, 2016a. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. Journal of the Marine Biological Association of the United Kingdom. Early view

  • Lanna, E. & M. Klautau, 2016b. Some aspects of the oogenesis of three species of clathrinid sponges (Calcarea, Porifera). Journal of the Marine Biological Association of the United Kingdom 96: 529–539.

    Article  Google Scholar 

  • Lanna, E., R. Paranhos, P. C. Paiva & M. Klautau, 2015. Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil. Marine Ecology 36: 1075–1087.

    Article  Google Scholar 

  • Lanna, E., L. Rattis & F. F. Cavalcanti, 2017. The presence of the diagnostic character of the genus Paraleucilla (Amphoriscidae, Calcarea, Porifera) may depend on the volume and body wall thickness of the sponges. Invertebrate Biology 136: 321–329.

    Article  Google Scholar 

  • Legendre, P., 2005. Species associations: the Kendall coefficient of concordance revisited. Journal of Agricultural, Biological and Environmental Statistics 10: 226–245.

    Article  Google Scholar 

  • Leite-Castro, L. V., J. Souza Junior, C. S. B. Salmito-Vanderley, J. F. Nunes, J.-F. Hamel & A. Mercier, 2016. Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Marine Biology 163: 1–13.

    Article  CAS  Google Scholar 

  • Lessa, G. C., M. Cirano, F. Genz, C. A. S. Tanajura & R. R. Silva, 2009. Oceanografia física. In: Hatje, V. & J. B. D. Andrade (EdS), Baía de Todos os Santos: aspectos oceanográficos. EDUFBA, Salvador: 69–119

  • Lyngsgaard, M. M., S. Markager, K. Richardson, E. F. Møller & H. H. Jakobsen, 2017. How well does chlorophyll explain the seasonal variation in phytoplankton activity? Estuaries and Coasts 40: 1263–1275.

    Article  CAS  Google Scholar 

  • Maldonado, M. & A. Riesgo, 2009. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Marine Biology 156: 2181–2197.

    Article  Google Scholar 

  • Maldonado, M. & C. M. Young, 1996. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Marine Ecology Progress Series 138: 169–180.

    Article  Google Scholar 

  • Maldonado, M., M. Ribes & F. C. van Duyl, 2012. Nutrient fluxes through sponges. Advances in Marine Biology 62: 113–182.

    Article  PubMed  Google Scholar 

  • Maria, M., G. Corriero, M. Gherardi, R. Baldacconi & E. Gaino, 2013. Sexual reproduction in Sarcotragus spinosulus from two different shallow environments. Marine Ecology 34: 394–408.

    Article  Google Scholar 

  • Mariani, S., M. J. Uriz & X. Turon, 2005. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. Journal of Plankton Research 27: 249–262.

    Article  Google Scholar 

  • Mercier, A. & J. F. Hamel, 2009. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Advances in Marine Biology 55: 1–302.

    Article  Google Scholar 

  • Meroz-Fine, E., S. Shefer & M. Ilan, 2005. Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Marine Biology 147: 243–250.

    Article  Google Scholar 

  • Nozawa, Y., Y. S. Huang & E. Hirose, 2016. Seasonality and lunar periodicity in the sexual reproduction of the coral-killing sponge, Terpios hoshinota. Coral Reefs 35: 1071–1081.

    Article  Google Scholar 

  • Olive, P. J. W., 1995. Annual breeding cycles in marine invertebrates and environmental-temperature—Probing the proximate and ultimate causes of reproductive synchrony. Journal of Thermal Biology 20: 79–90.

    Article  Google Scholar 

  • Orton, J. H., 1920. Sea temperature, breeding and distribution in marine animals. Journal of the Marine Biological Association of the United Kingdom 12: 312–326.

    Article  Google Scholar 

  • Perez, V., E. Fernandez, E. Maranon, P. Serret & C. Garcia-Soto, 2005. Seasonal and interannual variability of chlorophyll-a and primary production in the Equatorial Atlantic: In situ and remote sensing observations. Journal of Plankton Research 27: 189–197.

    Article  CAS  Google Scholar 

  • Pires, D. O., C. B. Castro & C. C. Ratto, 1999. Reef coral reproduction in the Abrolhos Reef Complex, Brazil: the endemic genus Mussismilia. Marine Biology 135: 463–471.

    Article  Google Scholar 

  • R Developmental Core Team, 2015. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051- 07-0, Available online at: http://www.R-project.org/

  • Reiswig, H. M., 1976. Natural gamete release and oviparity in Caribbean Demospongiae. Aspects of Sponge Biology, New York: 25–27.

    Google Scholar 

  • Riesgo, A. & M. Maldonado, 2008. Differences in reproductive timing among sponges sharing habitat and thermal regime. Invertebrate Biology 127: 357–367.

    Article  Google Scholar 

  • Riesgo, A., M. Maldonado & M. Durfort, 2007. Dynamics of gametogenesis, embryogenesis, and larval release in a Mediterranean homosclerophorid demosponge. Marine and Freshwater Research 58: 398–417.

    Article  Google Scholar 

  • Riesgo, A., M. Novo, P. P. Sharma, M. Peterson, M. Maldonado & G. Giribet, 2013. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zoologica Scripta 43: 101–117.

    Article  Google Scholar 

  • Riesgo, A., S. Taboada, L. Sánchez-Vila, J. Solà, A. Bertran & C. Avila, 2015. Some like It fat: comparative ultrastructure of the embryo in two demosponges of the genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10: e0118805.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scrosati, R. A. & J. A. Ellrich, 2016. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005-2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ 4: e2623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson, T. L., 1984. The cell biology of sponges. Springer-Verlag, New York.

    Book  Google Scholar 

  • Smart, T. I., C. M. Young & R. B. Emlet, 2012. Environmental cues and seasonal reproduction in a temperate estuary: a case study of Owenia collaris (Annelida: Polychaeta, Oweniidae). Marine Ecology 33: 290–301.

    Article  Google Scholar 

  • Storr, J. F., 1964. Ecology of the Gulf of Mexico commercial sponges and its relation to the fishery. US Department of Interior, Fish and Wildlife Service, Washington.

    Google Scholar 

  • Stubler, A. D., H. Robertson, H. J. Styron, J. M. Carroll & C. M. Finelli, 2017. Reproductive and recruitment dynamics of clionaid sponges on oyster reefs in North Carolina. Invertebrate Biology

  • Thorson, G., 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews 25: 1–45.

    Article  CAS  PubMed  Google Scholar 

  • Vacelet, J., 1979 Quelques stades de la reproduction sexuée d’une éponge sphinctozoaire actuelle. In: Levi C. & N. Boury-Esnault (eds) Biologie des Spongiaires - Sponge Biology Centre National de la Recherche Scientifique, Paris, pp 95–101

  • Weyrer, S., K. Ruetzler & R. Rieger, 1999. Serotonin in cells of Tedania ignis (Porifera, Poecilosclerida). Memoirs of the Queensland Museus 44: 659–666.

    Google Scholar 

  • Whalan, S., C. Battershill & R. de Nys, 2007. Sexual reproduction of the brooding sponge Rhopaloeides odorabile. Coral Reefs 26: 655–663.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all the students in our lab (LEBR) that helped in collecting the sponges during the study. We thank Andre L. Cruz a researcher of the National Institute of Science and Technology in Comparative Physiology (INCT—Fisiologia Comparada) who enabled the use of equipment from the Laboratory of Animal Physiology (LAFISA/UFBA) and Guilherme Lessa for providing data on seawater temperature. We also thank Jaaziel E. Garcia Hernandez (University of Puerto Rico at Mayagüez) for reviewing the English style and grammar of the manuscript. BC, CSS, JH, and UP received fellowships of the Programa de Bolsas de Iniciação Científica (PIBIC) of UFBA. VV was benefited by a PhD scholarship from CAPES. Research in our lab is financially supported by the Brazilian National Council of Technological and Scientific Development (CNPq: 477227/2013-9), Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB: JCB0014/2016) and PROPCI/PRODOC-UFBA. Our lab is part of the National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Lanna.

Additional information

Handling editor: Iacopo Bertocci

Bruno Cajado, Carine Santos-da-Silva, Jéssica da Hora, Ubaldo Porto and Vivian Vasconcellos have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 47 kb)

Supplementary material 2 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanna, E., Cajado, B., Santos-da-Silva, C. et al. Is the Orton’s rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues. Hydrobiologia 815, 187–205 (2018). https://doi.org/10.1007/s10750-018-3562-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3562-7

Keywords

Navigation