Hydrobiologia

, Volume 815, Issue 1, pp 187–205 | Cite as

Is the Orton’s rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues

  • Emilio Lanna
  • Bruno Cajado
  • Carine Santos-da-Silva
  • Jéssica da Hora
  • Ubaldo Porto
  • Vivian Vasconcellos
Primary Research Paper

Abstract

Although the Orton’s rule was already questioned for several invertebrate lineages, it remains unchallenged in sponges. To assess its validity in Porifera, we investigated the reproductive cycle of five species of Demospongiae on a tropical rocky shore, aiming to determine the effect of some environmental variables (EVs) on the periodicity, density of reproductive elements, and population engagement in reproduction. All species reproduced continuously, with low percentage of reproductive individuals and low fecundity. Each species presented a set of models containing different EVs to explain their reproductive traits. In general, the relationship of the EVs on the percentage of reproductive individuals and density of gametes and embryos was delayed in 1–3 months. Temperature was amongst the factors that best explained the species reproduction, with a delay of 1 month being the factor most consistently found amongst the models. In addition, we carried out a meta-analysis and discovered that in temperate regions most species reproduced periodically, whilst in the tropics, a small percentage reproduced continuously. Our findings suggest that Orton’s Rule is partially sustained, as species reproduced continuously, but challenge the lack of the influence of the temperature and other EVs in the reproduction of tropical marine invertebrates.

Keywords

Gametes Embryos Porifera Temperature Multi-model selection Phenology Western Tropical Atlantic 

Notes

Acknowledgements

We are grateful to all the students in our lab (LEBR) that helped in collecting the sponges during the study. We thank Andre L. Cruz a researcher of the National Institute of Science and Technology in Comparative Physiology (INCT—Fisiologia Comparada) who enabled the use of equipment from the Laboratory of Animal Physiology (LAFISA/UFBA) and Guilherme Lessa for providing data on seawater temperature. We also thank Jaaziel E. Garcia Hernandez (University of Puerto Rico at Mayagüez) for reviewing the English style and grammar of the manuscript. BC, CSS, JH, and UP received fellowships of the Programa de Bolsas de Iniciação Científica (PIBIC) of UFBA. VV was benefited by a PhD scholarship from CAPES. Research in our lab is financially supported by the Brazilian National Council of Technological and Scientific Development (CNPq: 477227/2013-9), Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB: JCB0014/2016) and PROPCI/PRODOC-UFBA. Our lab is part of the National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE).

Supplementary material

10750_2018_3562_MOESM1_ESM.xlsx (48 kb)
Supplementary material 1 (XLSX 47 kb)
10750_2018_3562_MOESM2_ESM.docx (65 kb)
Supplementary material 2 (DOCX 64 kb)

References

  1. Anderson, D. R., 2008. Model based inference in the life sciences: a primer on evidence. Springer, New York.CrossRefGoogle Scholar
  2. Asa, S., T. Yeemin, N. Chaitanawisuti & A. Kritsanapuntu, 2000. Sexual reproduction of a marine sponge, Petrosia sp. from coral communities in the Gulf of Thailand. Proceeding of the 9th International Coral Reef Symposium: 421–424Google Scholar
  3. Ayling, A. L., 1980. Patterns of sexuality, asexual reproduction and recruitment in some subtidal marine Demospongiae. Biological Bulletin 158: 271–282.CrossRefGoogle Scholar
  4. Aviz, D., A. J. A. Pinto, M. A. P. Ferreira, R. M. Rocha & J. S. Rosa Filho, 2016. Reproductive biology of Sabellaria wilsoni (Sabellariidae: Polychaeta), an important ecosystem engineer on the Amazon coast. Journal of the Marine Biological Association of the United Kingdom. 1–12Google Scholar
  5. Baldacconi, R., C. Nonnis-Marzano, E. Gaino & G. Corriero, 2007. Sexual reproduction, larval development and release in Spongia officinalis L. (Porifera, Demospongiae) from the Apulian coast. Marine Biology 152: 969–979.CrossRefGoogle Scholar
  6. Bauer, R. T., 1989. Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. Journal of Experimental Marine Biology and Ecology 127: 175–187.CrossRefGoogle Scholar
  7. Bauer, R. T., 1992. Testing generalizations about latitudinal variation in reproduction and recruitment patterns with sicyoniid and caridean shrimp species. Invertebrate Reproduction and Development 22: 193–202.CrossRefGoogle Scholar
  8. Bautista-Guerrero, E., J. L. Carballo & M. Maldonado, 2010. Reproductive cycle of the coral-excavating sponge Thoosa mismalolli (Clionaidae) from Mexican Pacific coral reefs. Invertebrate Biology 129: 285–296.CrossRefGoogle Scholar
  9. Becerro, M. A., 2008. Quantitative trends in sponge ecology research. Marine Ecology 29: 167–177.CrossRefGoogle Scholar
  10. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York.Google Scholar
  11. Ceuta, L. O. & G. Boehs, 2012. Reproductive cycle of Tagelus plebeius (Mollusca: Bivalvia) in the estuary of the Cachoeira River, Ilhéus, Bahia, Brazil. Brazilian Journal of Biology 72: 569–576.CrossRefGoogle Scholar
  12. Chia, F.-S. & C. W. Walker, 1991. Echinodermata: Asteroidea. In Giese A.& V. Pearse (eds) Reproduction of Marine Invertebrates Vol. VI. Boxwood Press, Pacific Groove: 301–353Google Scholar
  13. Corriero, G., M. Sarà & P. Vaccaro, 1996. Sexual and asexual reproduction in two species of Tethya (Porifera: Demospongiae) from a Mediterranean coastal lagoon. Marine Biology 126: 175–181.CrossRefGoogle Scholar
  14. Darling, E. S., N. A. J. Graham, F. A. Januchowski-Hartley, K. L. Nash, M. S. Pratchett & S. K. Wilson, 2017. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36: 561–575.CrossRefGoogle Scholar
  15. de Goeij, J. M., D. van Oevelen, M. J. A. Vermeij, R. Osinga, J. J. Middelburg, A. F. P. M. de Goeij & W. Admiraal, 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342: 108–110.CrossRefPubMedGoogle Scholar
  16. Di Camillo, C. G., M. Coppari, I. Bartolucci, M. Bo, F. Betti, M. Bertolino, B. Calcinai, C. Cerrano, G. De Grandis & G. Bavestrello, 2012. Temporal variations in growth and reproduction of Tedania anhelans and Chondrosia reniformis in the North Adriatic Sea. Hydrobiologia 687: 299–313.CrossRefGoogle Scholar
  17. Elvin, D. W., 1976. Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Biol Bull 151: 108–125.CrossRefGoogle Scholar
  18. Ereskovsky, A. V., 2000. Reproduction cycles and strategies of the cold-water sponges Halisarca dujardini (Demospongiae, Halisarcida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea. Biological Bulletin 198: 77–87.CrossRefPubMedGoogle Scholar
  19. Ereskovsky, A. V., 2010. The comparative embryology of sponges. Springer, Dordrecht, Heidelberg.CrossRefGoogle Scholar
  20. Ereskovsky, A., M. Dubois, J. Ivanišević, E. Gazave, P. Lapebie, D. Tokina & T. Pérez, 2013. Pluri-annual study of the reproduction of two Mediterranean Oscarella species (Porifera, Homoscleromorpha): cycle, sex-ratio, reproductive effort and phenology. Marine Biology 160: 423–438.CrossRefGoogle Scholar
  21. Ettinger-Epstein, P., S. W. Whalan, C. N. Battershill & R. de Nys, 2007. Temperature cues gametogenesis and larval release in a tropical sponge. Marine Biology 153: 171–178.CrossRefGoogle Scholar
  22. Fromont, J., 1994. Reproductive development and timing of tropical sponges (Order Haplosclerida) from the Great-Barrier-Reef, Australia. Coral Reefs 13: 127–133.CrossRefGoogle Scholar
  23. Fromont, J. & P. R. Bergquist, 1994. Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef. Coral Reefs 13: 119–126.CrossRefGoogle Scholar
  24. Genta-Jouve, G. & O. P. Thomas, 2012. Sponge Chemical Diversity: From Biosynthetic Pathways to Ecological Roles. In Becerro, M. A., M. J. Uriz, M. Maldonado & X. Turon (eds), Advances in Marine Biology. Academic Press, Amsterdam: 183–230.Google Scholar
  25. Giese, A. C., 1959. Comparative physiology: annual reproductive cycles of marine invertebrates. Annual Review of Physiology 21: 547–576.CrossRefPubMedGoogle Scholar
  26. Gregg, W. W. & N. W. Casey, 2004. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sensing of Environment 93: 463–479.CrossRefGoogle Scholar
  27. Hajdu, E., S. Peixinho & J. C. C. Fernandez, 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Museu Nacional, Rio de Janeiro.Google Scholar
  28. Hoppe, W. F., 1988. Reproductive patterns in three species of large coral reef sponges. Coral Reefs 7: 45–50.CrossRefGoogle Scholar
  29. Jaeckle, W. B., 1995. Transport and metabolism of alanine and palmitic acid by field-collected larvae of Tedania ignis (Porifera, Demospongiae): estimated consequences of limited label translocation. Biological Bulletin 189: 159–167.CrossRefPubMedGoogle Scholar
  30. Kaye, H. R. & H. M. Reiswig, 1991. Sexual reproduction in four Caribbean commercial sponges. I. Reproductive cycles and spermatogenesis. Invertebrate Reproduction and Development 19: 1–11.CrossRefGoogle Scholar
  31. Lanna, E. & M. Klautau, 2016a. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. Journal of the Marine Biological Association of the United Kingdom. Early view Google Scholar
  32. Lanna, E. & M. Klautau, 2016b. Some aspects of the oogenesis of three species of clathrinid sponges (Calcarea, Porifera). Journal of the Marine Biological Association of the United Kingdom 96: 529–539.CrossRefGoogle Scholar
  33. Lanna, E., R. Paranhos, P. C. Paiva & M. Klautau, 2015. Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil. Marine Ecology 36: 1075–1087.CrossRefGoogle Scholar
  34. Lanna, E., L. Rattis & F. F. Cavalcanti, 2017. The presence of the diagnostic character of the genus Paraleucilla (Amphoriscidae, Calcarea, Porifera) may depend on the volume and body wall thickness of the sponges. Invertebrate Biology 136: 321–329.CrossRefGoogle Scholar
  35. Legendre, P., 2005. Species associations: the Kendall coefficient of concordance revisited. Journal of Agricultural, Biological and Environmental Statistics 10: 226–245.CrossRefGoogle Scholar
  36. Leite-Castro, L. V., J. Souza Junior, C. S. B. Salmito-Vanderley, J. F. Nunes, J.-F. Hamel & A. Mercier, 2016. Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Marine Biology 163: 1–13.CrossRefGoogle Scholar
  37. Lessa, G. C., M. Cirano, F. Genz, C. A. S. Tanajura & R. R. Silva, 2009. Oceanografia física. In: Hatje, V. & J. B. D. Andrade (EdS), Baía de Todos os Santos: aspectos oceanográficos. EDUFBA, Salvador: 69–119Google Scholar
  38. Lyngsgaard, M. M., S. Markager, K. Richardson, E. F. Møller & H. H. Jakobsen, 2017. How well does chlorophyll explain the seasonal variation in phytoplankton activity? Estuaries and Coasts 40: 1263–1275.CrossRefGoogle Scholar
  39. Maldonado, M. & A. Riesgo, 2009. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Marine Biology 156: 2181–2197.CrossRefGoogle Scholar
  40. Maldonado, M. & C. M. Young, 1996. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Marine Ecology Progress Series 138: 169–180.CrossRefGoogle Scholar
  41. Maldonado, M., M. Ribes & F. C. van Duyl, 2012. Nutrient fluxes through sponges. Advances in Marine Biology 62: 113–182.CrossRefPubMedGoogle Scholar
  42. Maria, M., G. Corriero, M. Gherardi, R. Baldacconi & E. Gaino, 2013. Sexual reproduction in Sarcotragus spinosulus from two different shallow environments. Marine Ecology 34: 394–408.CrossRefGoogle Scholar
  43. Mariani, S., M. J. Uriz & X. Turon, 2005. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. Journal of Plankton Research 27: 249–262.CrossRefGoogle Scholar
  44. Mercier, A. & J. F. Hamel, 2009. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Advances in Marine Biology 55: 1–302.CrossRefGoogle Scholar
  45. Meroz-Fine, E., S. Shefer & M. Ilan, 2005. Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Marine Biology 147: 243–250.CrossRefGoogle Scholar
  46. Nozawa, Y., Y. S. Huang & E. Hirose, 2016. Seasonality and lunar periodicity in the sexual reproduction of the coral-killing sponge, Terpios hoshinota. Coral Reefs 35: 1071–1081.CrossRefGoogle Scholar
  47. Olive, P. J. W., 1995. Annual breeding cycles in marine invertebrates and environmental-temperature—Probing the proximate and ultimate causes of reproductive synchrony. Journal of Thermal Biology 20: 79–90.CrossRefGoogle Scholar
  48. Orton, J. H., 1920. Sea temperature, breeding and distribution in marine animals. Journal of the Marine Biological Association of the United Kingdom 12: 312–326.CrossRefGoogle Scholar
  49. Perez, V., E. Fernandez, E. Maranon, P. Serret & C. Garcia-Soto, 2005. Seasonal and interannual variability of chlorophyll-a and primary production in the Equatorial Atlantic: In situ and remote sensing observations. Journal of Plankton Research 27: 189–197.CrossRefGoogle Scholar
  50. Pires, D. O., C. B. Castro & C. C. Ratto, 1999. Reef coral reproduction in the Abrolhos Reef Complex, Brazil: the endemic genus Mussismilia. Marine Biology 135: 463–471.CrossRefGoogle Scholar
  51. R Developmental Core Team, 2015. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051- 07-0, Available online at: http://www.R-project.org/
  52. Reiswig, H. M., 1976. Natural gamete release and oviparity in Caribbean Demospongiae. Aspects of Sponge Biology, New York: 25–27.Google Scholar
  53. Riesgo, A. & M. Maldonado, 2008. Differences in reproductive timing among sponges sharing habitat and thermal regime. Invertebrate Biology 127: 357–367.CrossRefGoogle Scholar
  54. Riesgo, A., M. Maldonado & M. Durfort, 2007. Dynamics of gametogenesis, embryogenesis, and larval release in a Mediterranean homosclerophorid demosponge. Marine and Freshwater Research 58: 398–417.CrossRefGoogle Scholar
  55. Riesgo, A., M. Novo, P. P. Sharma, M. Peterson, M. Maldonado & G. Giribet, 2013. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zoologica Scripta 43: 101–117.CrossRefGoogle Scholar
  56. Riesgo, A., S. Taboada, L. Sánchez-Vila, J. Solà, A. Bertran & C. Avila, 2015. Some like It fat: comparative ultrastructure of the embryo in two demosponges of the genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10: e0118805.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Scrosati, R. A. & J. A. Ellrich, 2016. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005-2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ 4: e2623.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Simpson, T. L., 1984. The cell biology of sponges. Springer-Verlag, New York.CrossRefGoogle Scholar
  59. Smart, T. I., C. M. Young & R. B. Emlet, 2012. Environmental cues and seasonal reproduction in a temperate estuary: a case study of Owenia collaris (Annelida: Polychaeta, Oweniidae). Marine Ecology 33: 290–301.CrossRefGoogle Scholar
  60. Storr, J. F., 1964. Ecology of the Gulf of Mexico commercial sponges and its relation to the fishery. US Department of Interior, Fish and Wildlife Service, Washington.Google Scholar
  61. Stubler, A. D., H. Robertson, H. J. Styron, J. M. Carroll & C. M. Finelli, 2017. Reproductive and recruitment dynamics of clionaid sponges on oyster reefs in North Carolina. Invertebrate BiologyGoogle Scholar
  62. Thorson, G., 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews 25: 1–45.CrossRefPubMedGoogle Scholar
  63. Vacelet, J., 1979 Quelques stades de la reproduction sexuée d’une éponge sphinctozoaire actuelle. In: Levi C. & N. Boury-Esnault (eds) Biologie des Spongiaires - Sponge Biology Centre National de la Recherche Scientifique, Paris, pp 95–101Google Scholar
  64. Weyrer, S., K. Ruetzler & R. Rieger, 1999. Serotonin in cells of Tedania ignis (Porifera, Poecilosclerida). Memoirs of the Queensland Museus 44: 659–666.Google Scholar
  65. Whalan, S., C. Battershill & R. de Nys, 2007. Sexual reproduction of the brooding sponge Rhopaloeides odorabile. Coral Reefs 26: 655–663.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations