Skip to main content

Advertisement

Log in

Colorimetric analysis is not sufficient to estimate bioavailable phosphorus in a hypersaline aquatic environment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Colorimetric analysis is commonly used to quantify P availability in aquatic environments. However, it may not be adequate to quantify the bioavailability of dissolved organic P compounds. This study aimed to investigate to what extent the colorimetrically measurable P fractions can be utilized by algae, with a particular emphasis on organic P compounds in a hypersaline aquatic environment. In this study, the growth of the marine alga Dunaliella tertiolecta Butcher was observed in axenic hypersaline cultures prepared with different organic P forms and related to the corresponding levels of colorimetrically measured P and total P. The malachite green method was used to colorimetrically analyze the different P forms and inductively coupled plasma-optical emission spectroscopy was used to quantify the total P. The results showed that only creatine P was colorimetrically detectable, of which 87% of its total concentration was measured. The growth of algae in the culture media with organic P compounds did not reflect the colorimetrically measurable organic P compounds. The results from this study imply that colorimetric analysis may not be sufficient to assess P availability to algae in hypersaline conditions where organic P components are the main source of P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldwin, D. S., 1998. Reactive “organic” phosphorus revisited. Water Research 32: 2265–2270.

    Article  CAS  Google Scholar 

  • Bjorkman, K. & D. M. Karl, 1994. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Marine Ecology Progress Series 111: 265–273.

    Article  Google Scholar 

  • Glibert, P. M. & J. M. Burkholder, 2011. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chinese Journal of Oceanology and Limnology 29: 724–738.

    Article  Google Scholar 

  • Hens, M., 1999. Aqueous Phase Speciation of Phosphorous in Sandy Soils. KULeuven, Leuven.

    Google Scholar 

  • Hens, M. & R. Merckx, 2002. The role of colloidal particles in the speciation and analysis of “dissolved” phosphorus. Water Research 36: 1483–1492.

    Article  CAS  PubMed  Google Scholar 

  • Hoppe, H. G., 2003. Phosphatase activity in the sea. Hydrobiologia 493: 187–200.

    Article  CAS  Google Scholar 

  • Huang, B. & H. Hong, 1999. Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Marine Pollution Bulletin 39: 205–211.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., J. A. Withers & C. Neal, 2002. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity. Hydrology and Earth System Sciences Discussions 6: 113–131.

    Article  Google Scholar 

  • Khoi, C. M., V. T. Guong & R. Merckx, 2006. Growth of the diatom Chaetoceros calcitrans in sediment extracts from Artemia franciscana ponds at different concentrations of nitrogen and phosphorus. Aquaculture 259: 354–364.

    Article  CAS  Google Scholar 

  • Khoi, C. M., V. T. Guong, M. Drouillon, P. Pypers & R. Merckx, 2008. Chemical estimation of phosphorus released from hypersaline pond sediments used for brine shrimp Artemia franciscana production in the Mekong Delta. Aquaculture 274: 275–280.

    Article  CAS  Google Scholar 

  • Khoi, C. M., V. T. Guong, N. V. Hoa, P. Sorgeloos & R. Merckx, 2009. Growth of Chaetoceros calcitrans in sediment extracts from Artemia franciscana culture ponds points to phosphorus limitation. Journal of the World Aquaculture Society 40: 104–112.

    Article  Google Scholar 

  • Kruskopf, M. M. & S. Du Plessis, 2004. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia 513: 59–70.

    Article  CAS  Google Scholar 

  • Kuang, Q., Y. Bi, Y. Xia & Z. Hu, 2004. Phytoplankton community and algal growth potential in Taipinghu Reservoir, Anhui Province, China. Lakes and Reservoirs: Research and Management 9: 119–124.

    Article  Google Scholar 

  • Labry, C., D. Delmas & A. Herbland, 2005. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay). Journal of Experimental Marine Biology and Ecology 318: 213–225.

    Article  CAS  Google Scholar 

  • Lapointe, B. E., 1987. Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Marine Biology 93: 561–568.

    Article  CAS  Google Scholar 

  • Lavens, P. & P. Sorgeloos, 1996. Manual on the Production and Use of Live Food for Aquaculture. FAO Fisheries Technical Paper.

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nedoma, J., J. Padisak & R. Koschel, 2003. Utilisation of 32P-labelled nucleotide- and non-nucleotide dissolved organic phosphorus by freshwater plankton. Advances in Limnology 87–89.

  • Neill, M., 2005. A method to determine which nutrient is limiting for plant growth in estuarine waters – at any salinity. Marine Pollution Bulletin 50: 945–955.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, K. R., W. F. DeBusk, R. D. DeLaune & M. S. Koch, 1993. Long-term nutrient accumulation rates in the Everglades. Soil Science Society of America Journal 57: 1147–1155.

    Article  CAS  Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of seawater. In Hill, M. N. (ed.), The Sea: Ideas and Observations on Progress in the Study of the Seas. Wiley Interscience, New York: 26–77.

    Google Scholar 

  • Townsend, S. A., J. H. Schult, M. M. Douglas & S. Skinner, 2008. Does the Redfield ratio infer nutrient limitation in the macroalga Spirogyra fluviatilis? Freshwater Biology 53: 509–520.

    Article  CAS  Google Scholar 

  • Turner, B. L., B. J. Cade-Menun, L. M. Condron & S. Newman, 2005. Extraction of soil organic phosphorus. Talanta 66: 294–306.

    Article  CAS  PubMed  Google Scholar 

  • Van Moorleghem, C., L. Six, F. Degryse, E. Smolders & R. Merckx, 2011. Effect of organic P forms and P present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography, and colorimetry. Analytical Chemistry 83(13): 5317–5323.

    Article  PubMed  Google Scholar 

  • Van Moorleghem, C., N. De Schutter, E. Smolders & R. Merckx, 2013. The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements. Hydrobiologia 709: 41–53.

    Article  CAS  Google Scholar 

  • Van Veldhoven, P. P. & G. P. Mannaerts, 1987. Inorganic and organic phosphate measurements in the nanomolar range. Analytical Biochemistry 161: 45–48.

    Article  PubMed  Google Scholar 

  • Van Wazer, J. R., 1973. The compounds of phosphorus. In Griffith, E. J., A. Beeton, J. M. Spencer & D. T. Mitchell (eds) Environmental Phosphorus Handbook. Wiley: 169–177.

  • Wan, Z., L. Jonasson & H. Bi, 2011. N/P ratio of nutrient uptake in the Baltic Sea. Ocean Science 7: 693–704.

    Article  CAS  Google Scholar 

  • Wan, Z., H. Bi, J. She, M. Maar & L. Jonasson, 2012. Model study on horizontal variability of nutrient N/P ratio in the Baltic Sea and its impacts on primary production, nitrogen fixation and nutrient limitation. Ocean Science Discussions 2012: 385–419.

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted within the Framework of Bilateral Collaboration funded by the Research Foundation-Flanders (FWO-Belgium) and the National Foundation for Science and Technology (NAFOSTED-Vietnam). We thank Anita Dehaese and Geert Vandewiele of the Laboratory of Aquaculture and Artemia Reference Center of Ghent University for technical assistance with algal inoculation and counting, and Kristin Coorevits of the Laboratory of Soil and Water Management, KU Leuven for assistance with ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chau Minh Khoi.

Additional information

Handling editor: David Philip Hamilton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoi, C.M., Merckx, R., Van Stappen, G. et al. Colorimetric analysis is not sufficient to estimate bioavailable phosphorus in a hypersaline aquatic environment. Hydrobiologia 815, 177–186 (2018). https://doi.org/10.1007/s10750-018-3560-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3560-9

Keywords

Navigation