Advertisement

Hydrobiologia

, Volume 815, Issue 1, pp 141–163 | Cite as

Causes of spatial distribution of subfossil diatom and chironomid assemblages in surface sediments of a remote deep island lake

  • Pedro Miguel Raposeiro
  • Alberto Saez
  • Santiago Giralt
  • Ana Cristina Costa
  • Vítor Gonçalves
Primary Research Paper

Abstract

Until recently, the distribution of diatom and chironomid assemblages and their attributes (species richness/diversity) in relation to water depth and sedimentary environments have been identified but not quantified. The influence of environmental variables on assemblage distribution and taxa richness in a deep, monomictic lake in São Miguel Island is assessed. Attention is given to community variation along a water-depth gradient. Sediment core samples were analysed for diatom content, chironomids, and grain-size clastic particles along three transects from the shoreline to the central deep basin of the lake at a resolution of 1 m water depth. Linear and unimodal regressions were used to test taxon richness, taxon diversity and taxon evenness versus water depth of each transect. A hump-shaped relationship between species richness and water depth was noted, with a peak occurring at mid-depth, meaning that samples located at that depth better represented the total subfossil assemblage living in lake Azul. Moreover, data indicate that both assemblages in Lake Azul, and taphonomic effects, were influenced by processes of clastic transport depending on the lake morphology. Results from this study allow us to access the spatial distribution of biological assemblages in clastic-dominated lakes with a high topographic gradient, and provide us with principal criteria that will allow us to determine coring locations that capture the true species diversity for studies in lakes.

Keywords

Diatom Chironomid Spatial distribution High-gradient lake species diversity 

Notes

Acknowledgements

Part of this study was financed by Fundação para a Ciência e Tecnologia (SFRH/BPD/99461/2014) and the PaleoNAO, RapidNAO and PaleoModes projects of the Spanish Ministry of Education (CGL2010-15767, CGL2013-40608-R and CGL2016-75281-C2-1-R, respectively). We deeply thank to Nora Richter for the revision of the English along the manuscript. We also thank the two anonymous reviewers whose comments/suggestions helped improve and clarify this manuscript. Finally, we are grateful to the Freshwater Ecology Group from the University of the Azores for all the help in field and laboratory work. The surveys performed comply with the current laws of Portugal.

Supplementary material

10750_2018_3557_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Alin, S. R. & A. S. Cohen, 2004. The live, the dead, and the very dead: taphonomic calibration of the recent record of paleoecological change in Lake Tanganyika. East Africa. Paleobiology 30(1): 44–81.CrossRefGoogle Scholar
  2. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.Google Scholar
  3. Anderson, N. J., 1990. Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. Journal of Paleolimnology 3(2): 143–160.CrossRefGoogle Scholar
  4. Anderson, T. J., R. S. Stelzer, H. G. Drecktrah & S. L. Eggert, 2012. Secondary production of Chironomidae in a large eutrophic lake: implications for lake sturgeon production. Freshwater Science 31(2): 365–378.CrossRefGoogle Scholar
  5. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In J. P. Smol, H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 3., Terrestrial, Algal, and Sillceous Indicators Kluwer Academic Publisbers, Dordrecht: 155–202.CrossRefGoogle Scholar
  6. Belay, A. & G. E. Fogg, 1978. Photoinhibition of photosynthesis in Asterionella formosa (Bacillariophyceae), 2. Journal of Phycology 14(3): 341–347.CrossRefGoogle Scholar
  7. Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40(3): 582–588.CrossRefGoogle Scholar
  8. Brodersen, K. P. & C. Lindegaard, 1999. Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwater Biology 42(1): 143–157.CrossRefGoogle Scholar
  9. Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46(2): 253–267.CrossRefGoogle Scholar
  10. Brodin, Y. W., 1986. The postglacial history of Lake Flarken, Southern Sweden, interpreted from subfossil insect remains. Internationale Revue der gesamten Hydrobiologie und Hydrographie 71(3): 371–432.CrossRefGoogle Scholar
  11. Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The identificiation and use of palaeartic chironomidae larvae in palaeoecology. Quarternary Research Association, London.Google Scholar
  12. Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33(2): 261–304.CrossRefGoogle Scholar
  13. Cantonati, M., S. Scola, N. Angeli, G. Guella & R. Frassanito, 2009. Environmental controls of epilithic diatom depth-distribution in an oligotrophic lake characterized by marked water-level fluctuations. European Journal of Phycology 44(1): 15–29.CrossRefGoogle Scholar
  14. Cao, Y., E. Zhang, X. Chen, N. John Anderson & J. Shen, 2012. Spatial distribution of subfossil Chironomidae in surface sediments of a large, shallow and hypertrophic lake (Taihu, SE China). Hydrobiologia 691(1): 59–70.CrossRefGoogle Scholar
  15. Cao, Y., E. Zhang, P. G. Langdon, E. Liu & J. Shen, 2014. Chironomid-inferred environmental change over the past 1400 years in the shallow, eutrophic Taibai Lake (south-east China): Separating impacts of climate and human activity. The Holocene.  https://doi.org/10.1177/0959683614522308.Google Scholar
  16. Chase, J. M. & M. A. Leibold, 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature 416(6879): 427–430.CrossRefPubMedGoogle Scholar
  17. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E. Plymouth, UK.Google Scholar
  18. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199(4335): 1302–1310.CrossRefPubMedGoogle Scholar
  19. Cruz, J. V., P. Antunes, C. Amaral, Z. França & J. C. Nunes, 2006. Volcanic lakes of the Azores archipelago (Portugal): geological setting and geochemical characterization. Journal of Volcanology and Geothermal Research 156(1–2): 135–157.CrossRefGoogle Scholar
  20. Cwynar, L. C., A. B. H. Rees, C. R. Pedersen & S. Engels, 2012. Depth distribution of chironomids and an evaluation of site-specific and regional lake-depth inference models: a good model gone bad? Journal of Paleolimnology 48(3): 517–533.CrossRefGoogle Scholar
  21. Cyr, H., 1998. Effects of wave disturbance and substrate slope on sediment characteristics in the littoral zone of small lakes. Canadian Journal of Fisheries and Aquatic Sciences 55(4): 967–976.CrossRefGoogle Scholar
  22. Davis, M. B., R. E. Moeller & J. Ford, 1984. Sediment focusing and pollen influx. In E. Y. Harworth & J. W. G. Lund (eds), Lakes sediments and environmental history. Leicester University Press, Leicester, 261–293.Google Scholar
  23. Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81(10): 2662–2679.CrossRefGoogle Scholar
  24. Eggermont, H., P. De Deyne & D. Verschuren, 2007. Spatial variability of chironomid death assemblages in the surface sediments of a fluctuating tropical lake (Lake Naivasha, Kenya). Journal of Paleolimnology 38(3): 309–328.CrossRefGoogle Scholar
  25. Engels, S. & L. C. Cwynar, 2011. Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665(1): 15–38.CrossRefGoogle Scholar
  26. Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography 44(4): 1114–1119.CrossRefGoogle Scholar
  27. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1(3): 179–191.CrossRefGoogle Scholar
  28. Frossard, V., L. Millet, V. Verneaux, J.-P. Jenny, F. Arnaud, M. Magny, J. Poulenard & M.-E. Perga, 2013. Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years. Journal of Paleolimnology 50(3): 257–273.CrossRefGoogle Scholar
  29. Gabel, F., X. F. Garcia, I. Schnauder & M. T. Pusch, 2012. Effects of ship-induced waves on littoral benthic invertebrates. Freshwater Biology 57(12): 2425–2435.CrossRefGoogle Scholar
  30. Gonçalves, V., 2008. Contribuição do estudo das microalgas para a avaliação da qualidade ecológica das lagoas dos Açores: fitoplâncton e diatomáceas bentónicas. Universidade dos Açores.Google Scholar
  31. Gonçalves, V., H. Marques & P. Raposeiro, 2015. Diatom assemblages and their associated environmental drivers in isolated oceanic island streams (Azores archipelago as case study). Hydrobiologia 751(1): 89–103.CrossRefGoogle Scholar
  32. Gotelli, N. J. & R. K. Colwell, 2011. Estimating species richness. In A. Magurran & B. McGill (eds), Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford: 39–54.Google Scholar
  33. Graham, J. H. & J. J. Duda, 2011. The humpbacked species richness-curve: a contingent rule for community ecology. International Journal of Ecology 2011: 1–15.CrossRefGoogle Scholar
  34. Håkanson, L., 1977. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Canadian Journal of Earth Sciences 14(3): 397–412.CrossRefGoogle Scholar
  35. Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrophication. In E. F. Stoermer & J. P. Smol (eds), The Diatoms. Cambridge University Press, Cambridge: 128–168.CrossRefGoogle Scholar
  36. Hampton, S. E., D. K. Gray, L. R. Izmest’eva, M. V. Moore & T. Ozersky, 2014. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia. PLoS ONE 9(2): e88920.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Hansson, L.-A., 1992. Factors regulating periphytic algal biomass. Limnology and Oceanography 37(2): 322–328.CrossRefGoogle Scholar
  38. Heggen, M. P., H. H. Birks, O. Heiri, J.-A. Grytnes & H. J. B. Birks, 2012. Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains? Journal of Paleolimnology 48(4): 669–691.CrossRefGoogle Scholar
  39. Heino, J., (2008) Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography 53(4): 1446–1455.  https://doi.org/10.4319/lo.2008.53.4.1446. CrossRefGoogle Scholar
  40. Heiri, O., 2004. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. Journal of Paleolimnology 32(1): 67–84.CrossRefGoogle Scholar
  41. Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26(3): 343–350.CrossRefGoogle Scholar
  42. Heiri, O., A. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1): 101–110.CrossRefGoogle Scholar
  43. Heiri, O., H. J. B. Birks, S. J. Brooks, G. Velle & E. Willassen, 2003. Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 199(1): 95–106.  https://doi.org/10.1016/S0031-0182(03)00498-X.CrossRefGoogle Scholar
  44. Heiri, O., S. J. Brooks, H. J. B. Birks & A. F. Lotter, 2011. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews 30(23–24): 3445–3456.CrossRefGoogle Scholar
  45. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54(2): 427–432.CrossRefGoogle Scholar
  46. Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnology and Oceanography 30(6): 1131–1143.CrossRefGoogle Scholar
  47. Hofmann, H., A. Lorke & F. Peeters, 2008. Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613(1): 85–96.CrossRefGoogle Scholar
  48. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19(1): 55–62.CrossRefGoogle Scholar
  49. Holmes, N., P. G. Langdon & C. J. Caseldine, 2009. Subfossil chironomid variability in surface sediment samples from Icelandic lakes: implications for the development and use of training sets. Journal of Paleolimnology 42(2): 281–295.CrossRefGoogle Scholar
  50. Kattel, G. R., R. W. Battarbee, A. Mackay & H. J. B. Birks, 2006. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38(2): 157–181.CrossRefGoogle Scholar
  51. King, L., G. Clarke, H. Bennion, M. Kelly & M. Yallop, 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18(1): 15–25.CrossRefGoogle Scholar
  52. Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2011. Habitat complexity: approaches and future directions. Hydrobiologia 685(1): 1–17.CrossRefGoogle Scholar
  53. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1/2 Naviculaceae. In H. Ettl (ed.), Süsswasserflora von Mitteleuropa. G. Fisher Verlag, Jena: 876.Google Scholar
  54. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2/2 Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, (ed.), Süsswasserflora von Mitteleuropa. G. Fisher Verlag, Jena: 576.Google Scholar
  55. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 2/3: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, (ed.), Süsswasserflora von Mitteleuropa. G. Fisher Verlag, Jena: 576.Google Scholar
  56. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 2/4: Achnanthaceae. In H. Ettl (ed.), Süsswasserflora von Mitteleuropa. G. Fisher Verlag, Jena: 576.Google Scholar
  57. Krammer, K. & H. Lange-Bertalot, 2000. Bacillariophyceae. 2/5: English and French translation of the keys. In H. Ettl (ed.), Süsswasserflora von Mitteleuropa. G. Fisher Verlag, Jena: 576.Google Scholar
  58. Kurek, J. & L. C. Cwynar, 2009. The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels. Journal of Paleolimnology 42(1): 37–50.CrossRefGoogle Scholar
  59. Laird, K. R., M. V. Kingsbury & B. F. Cumming, 2010. Diatom habitats, species diversity and water-depth inference models across surface-sediment transects in Worth Lake, northwest Ontario, Canada. Journal of Paleolimnology 44(4): 1009–1024.CrossRefGoogle Scholar
  60. Lampert, W. & U. Sommer, 2007. Limnoecology – The Ecology of Lakes and Streams. Oxford University Press, New York.Google Scholar
  61. Larocque, I., 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 172(1): 133–142.CrossRefGoogle Scholar
  62. Lecointe, C., M. Coste & J. Prygiel, 1993. Omnidia: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269–270(1): 509–513.CrossRefGoogle Scholar
  63. Luoto, T. P., 2009. A Finnish chironomid- and chaoborid-based inference model for reconstructing past lake levels. Quaternary Science Reviews 28(15–16): 1481–1489.CrossRefGoogle Scholar
  64. Luoto, T. P., 2010. Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecological Monographs 80(2): 303–329.CrossRefGoogle Scholar
  65. Luoto, T. P. & V. P. Salonen, 2010. Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities. Boreal Environment Research 15(1): 1–18.Google Scholar
  66. Maestre, F. T. & J. F. Reynolds, 2006. Spatial heterogeneity in soil nutrient supply modulates nutrient and biomass responses to multiple global change drivers in model grassland communities. Global Change Biology 12(12): 2431–2441.CrossRefGoogle Scholar
  67. Matthews-Bird, F., W. D. Gosling, A. L. Coe, M. Bush, F. E. Mayle, Y. Axford & S. J. Brooks, 2016. Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America. Ecology and Evolution 6(1): 91–112.CrossRefPubMedGoogle Scholar
  68. Millet, L., C. Giguet-Covex, V. Verneaux, J.-C. Druart, T. Adatte & F. Arnaud, 2010. Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. Journal of Paleolimnology 44(4): 963–978.CrossRefGoogle Scholar
  69. Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82(9): 2381–2396.CrossRefGoogle Scholar
  70. Moos, M. T., K. R. Laird & B. F. Cumming, 2005. Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. Journal of Paleolimnology 34(2): 217–227.CrossRefGoogle Scholar
  71. Nichols, J. E., M. Walcott, R. Bradley, J. Pilcher & Y. Huang, 2009. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quaternary Research 72: 443–451.CrossRefGoogle Scholar
  72. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, Peter Solymos, M. H. H. Stevens & H. Wagner, 2015. Vegan: Community Ecology Package. R package version 2.2 [available at http://CRAN.R-project.org/package=vegan].
  73. Oliver, T., D. B. Roy, J. K. Hill, T. Brereton & C. D. Thomas, 2010. Heterogeneous landscapes promote population stability. Ecology Letters 13(4): 473–484.CrossRefPubMedGoogle Scholar
  74. Pereira, C. L., P. M. Raposeiro, A. C. Costa, R. Bao, S. Giralt & V. Gonçalves, 2014. Biogeography and lake morphometry drive diatom and chironomid assemblages’ composition in lacustrine surface sediments of oceanic islands. Hydrobiologia 730: 93–112.  https://doi.org/10.1007/s10750-014-1824-6.CrossRefGoogle Scholar
  75. Peters, J. A. & D. M. Lodge, 2010. Lake ecosystem ecology: a global perspective. In G. E. Likens (ed.), Lake Ecosystem Ecology: A Global Perspective. Adademic Press, San Diego: 18–26.Google Scholar
  76. Pinder, L. C. V., 1986. Biology of freshwater chironomidae. Annual Review of Entomology 31(1): 1–23.CrossRefGoogle Scholar
  77. Ptacnik, R., A. G. Solimini, T. Andersen, T. Tamminen, P. Brettum, L. Lepistö, E. Willén & S. Rekolainen, 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences 105(13): 5134–5138.CrossRefGoogle Scholar
  78. RCoreTeam, 2015. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.Google Scholar
  79. Raposeiro, P. M., S. J. Hughes & A. C. Costa, 2009. Chironomidae (Diptera: Insecta) in oceanic islands: new records for the Azores and biogeographic notes. Annales de Limnologie 45(2): 59–67.CrossRefGoogle Scholar
  80. Raposeiro, P. M., A. C. Costa & S. H. Hughes, 2011. Environmental factors – spatial and temporal variation of chironomid communities in oceanic island streams (Azores archipelago). Annales de Limnologie 47: 325–338.CrossRefGoogle Scholar
  81. Raposeiro, P. M., S. J. Hughes & A. C. Costa, 2013. Environmental drivers – spatial and temporal variation of macroinvertebrate communities in island streams: the case of the Azores Archipelago. Fundamental and Applied Limnology/Archiv fur Hydrobiologie 182(4): 337–350.CrossRefGoogle Scholar
  82. Raposeiro, P. M., M. J. Rubio, A. González, A. Hernández, G. Sánchez-López, D. Vázquez-Loureiro, V. Rull, R. Bao, A. C. Costa, V. Gonçalves, A. Sáez & S. Giralt, 2017. Impact of the historical introduction of exotic fishes on the chironomid community of Lake Azul (Azores Islands). Palaeogeography, Palaeoclimatology, Palaeoecology 466: 77–88.CrossRefGoogle Scholar
  83. Renberg, I., 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4(1): 87–90.CrossRefGoogle Scholar
  84. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  85. Saunders, L. L., S. S. Kilham & R. Verb, 2016. Diatom responses to microenvironment structure within metaphyton mats. Inland Waters 6(2): 224–233.CrossRefGoogle Scholar
  86. Schillereff, D. N., R. C. Chiverrell, N. Macdonald & J. M. Hooke, 2014. Flood stratigraphies in lake sediments: a review. Earth-Science Reviews 135: 17–37.CrossRefGoogle Scholar
  87. Shannon, C. E. & W. Weaver, 1963. A Mathematical Theory of Communication. University of Illinois Press, Champaign.Google Scholar
  88. Shurin, J. B., S. E. Arnott, H. Hillebrand, A. Longmuir, B. Pinel-Alloul, M. Winder & N. D. Yan, 2007. Diversity-stability relationship varies with latitude in zooplankton. Ecology Letters 10(2): 127–134.CrossRefPubMedGoogle Scholar
  89. Skinner, D., R. Oliver, K. Aldridge & J. Brookes, 2014. Extreme water level decline effects sediment distribution and composition in Lake Alexandrina. South Australia. Limnology 15(2): 117–126.Google Scholar
  90. Smol, J. P. & E. F. Stoermer, 2010. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  91. Soininen, J. & J. Weckström, 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental and Applied Limnology/Archiv fur Hydrobiologie 174(3): 205–213.CrossRefGoogle Scholar
  92. Talling, J. F., 2009. Electrical conductance – a versatile guide in freshwater science. Freshwater Reviews 2(1): 65–78.CrossRefGoogle Scholar
  93. Terry, R. D. & G. V. Chilingar, 1955. Summary of “Concerning some additional aids in studying sedimentary formations,” by M. S. Shvetsov. Journal of Sedimentary Research 25(3): 229–234.CrossRefGoogle Scholar
  94. Tokeshi, M., 1995. 12 Species interactions and community structure. In P. D. Armitage, P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 297–335.CrossRefGoogle Scholar
  95. Tolonen, K. T. & H. Hämäläinen, 2010. Comparison of sampling methods and habitat types for detecting impacts on lake littoral macroinvertebrate assemblages along a gradient of human disturbance. Fundamental and Applied Limnology 176(1): 43–59.CrossRefGoogle Scholar
  96. Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography 42(5): 938–949.CrossRefGoogle Scholar
  97. van Hardenbroek, M., O. Heiri, M. F. Wilhelm & A. F. Lotter, 2010. How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? Aquatic Sciences 73(2): 247–259.CrossRefGoogle Scholar
  98. Verbruggen, F., O. Heiri, J. J. MerilÄInen & A. F. Lotter, 2011. Subfossil chironomid assemblages in deep, stratified European lakes: relationships with temperature, trophic state and oxygen. Freshwater Biology 56(3): 407–423.CrossRefGoogle Scholar
  99. Wang, Q., X. Yang, P. Hamilton & E. Zhang, 2012. Linking spatial distributions of sediment diatom assemblages with hydrological depth profiles in a plateau deep-water lake system of subtropical China. Fottea 12(1): 59–73.CrossRefGoogle Scholar
  100. Yang, H., R. J. Flower & R. W. Battarbee, 2009. Influence of environmental and spatial variables on the distribution of surface sediment diatoms in an upland loch, Scotland. Acta Botanica Croatica 68(2): 367–380.Google Scholar
  101. Zhang, E., B. Zheng, Y. Cao, G. Gao & J. Shen, 2012. Influence of environmental parameters on the distribution of subfossil chironomids in surface sediments of Bosten lake (Xinjiang, China). Journal of Limnology 71(2): 31.CrossRefGoogle Scholar
  102. Zhang, E., Y. Cao, P. Langdon, Q. Wang, J. Shen & X. Yang, 2013. Within-lake variability of subfossil chironomid assemblage in a large, deep subtropical lake (Lugu lake, southwest China). Journal of Paleolimnology.  https://doi.org/10.4081/jlimol.2013.e10.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pedro Miguel Raposeiro
    • 1
    • 2
  • Alberto Saez
    • 3
  • Santiago Giralt
    • 4
  • Ana Cristina Costa
    • 1
    • 2
  • Vítor Gonçalves
    • 1
    • 2
  1. 1.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos AçoresAzoresPortugal
  2. 2.Departamento de Biologia, Faculdade de Ciências e TecnologiasUniversidade dos AçoresPonta DelgadaPortugal
  3. 3.Department of Earth and Ocean Dynamics, Faculty of Earth SciencesUniversitat de BarcelonaBarcelonaSpain
  4. 4.Institute of Earth Sciences Jaume, Almera (ICTJA-CSIC)BarcelonaSpain

Personalised recommendations